@

)

©)

@

(b)

©

Margo Seltzer

LIBTP: Portable, Modular Transactions for UNIX

€y

Although these properties are most frequently discussed in the context of databases,
they are useful programming paradigms for more general purpose applications. There are
several different situations where transactions can be used to replace current ad-hoc
mechanisms.

One situation is when multiple files or parts of files need to be updated in an atomic
fashion. For example, the traditional UNIX file system uses ordering constraints to
achieve recoverability in the face of crashes. When a new file is created, its inode is
written to disk before the new file is added to the directory structure. This guarantees
that, if the system crashes between the two 1/0"s, the directory does not contain are

reference to an invalid inode. In actuality, the desired effect is that these two updates

have the transactional property of atomicity (either both writes are visible or neither
is). Rather than building special purpose recovery mechanisms into the file system or
related tools (e.g. fsck(8)), one could use general purpose transaction recovery protocols
after system failure. Any application that needs to keep multiple, related files (or
directories) consistent should do so using transactions. Source code control systems, such
as RCS and SCCS, should use transaction semantics to allow the ““checking in”” of groups of
related files. In this way, if the““check-in”” fails, the transaction may be aborted,
backing out the partial ““check-in”” leaving the source repository in a consistent state.

A second situation where transactions can be used to replace current ad-hoc mechanisms
is in applications where concurrent updates to a shared file are desired, but there is
logical consistency of the data which needs to be preserved. For example, when the password
file is updated, file locking is used to disallow concurrent access. Transaction semantics
on the password files would allow concurrent updates, while preserving the logical
consistency of the password database. Similarly, UNIX utilities which rewrite files face a
potential race condition between their rewriting a file and another process reading the
file. For example, the compiler (more precisely, the assembler) may have to rewrite a file
to which it has write permission in a directory to which it does not have write permission.
While the ““.0”” file is being written, another utility such as nm(1) or ar(1) may read the
file and produce invalid results since the file has not been completely written. Currently,
some utilities use special purpose code to handle such cases while others ignore the

problem and force users to live with the consequences. 1. Introduction

(in

atomic fashion) UNIX
170 i
(atomicity) (visible)
(invisible)
(concurrent)
UNIX
“<.07” nm(1) ar(l)

(live with the

consequences)

In this paper, we present a simple library which provides transaction semantics
(atomicity, consistency, isolation, and durability. The 4.4BSD database access methods
have been modified to use this library optionally providing shared buffer management
between applications, locking, and transaction semantics. Any UNIX program may
transaction protect its data by requesting transaction protection with the db(3) library
or by adding appropriate calls to the transaction manager, buffer manager, lock manager,
and log manager. The library routines may be linked into the host application and called by

subroutine interface, or they may reside in a separate server process. The server

architecture provides for network access and better protection mechanisms. 1.
Introduction
4_4BSD
UNIX
db(3)
(call)

(transaction protect)

3.2. Module Architecture
The preceding sections described modules for managing the transaction log, locks, and a
cache of shared buffers. In addition, we need to provide functionality for transaction

begin, commit, and abort processing, necessitating a transaction manager. In order to

arbitrate concurrent access to locks and buffers, we include a process management module
which manages a collection of semaphores used to block and release processes. Finally, in
order to provide a simple, standard interface we have modified the database access
routines (db(3)). For the purposes of this paper we call the modified package the Record
Manager. Figure one shows the main interfaces and architecture of LIBTP.

3.2.1. The Log Manager

The Log Manager enforces the write-ahead logging protocol. Its primitive operations are
log, log_commit, log_read, log_roll and log_unroll. The log call performs a buffered write
of the specified log record and returns a unique log sequence number (LSN). This LSN may
then be used to retrieve a record from the log using the log_read call. The log interface
knows very little about the internal format of the log records it receives. Rather, all log
records are referenced by a header structure, a log record type, and a character buffer
containing the data to be logged. The log record type is used to call the appropriate redo
and undo routines during abort and commit processing. While we have used the Log Manager to
provide before and after image logging, it may also be used for any of the logging
algorithms discussed.

The log_commit operation behaves exactly like the log operation but guarantees that the
log has been forced to disk before returning. A discussion of our commit strategy appears
in the implementation section (section 4.2). Log unroll reads log records from the log,
following backward transaction pointers and calling the appropriate undo routines to
implement transaction abort. In a similar manner, log_roll reads log records sequentially
forward, calling the appropriate redo routines to recover committed transactions after a
system crash.

3.2.2. The Buffer Manager
The Buffer Manager uses a Pool of shared memory to provide a least-recently-used (LRU)

block cache. Although the current library provides an LRU cache, it would be simple to add

alternate replacement policies as suggested by [CHOU85] or to provide multiple buffer
pools with different policies. Transactions request pages from the buffer manager and keep
them pinned to ensure that they are not written to disk while they are in a logically
inconsistent state. When page replacement is necessary, the Buffer Manager finds an
unpinned page and then checks with the Log Manager to ensure that the write-ahead protocol
is enforced.

3.2.3. The Lock Manager

The Lock Manager supports general purpose locking (single writer, multiple readers)
which is currently used to provide two-phase locking and high concurrency B-tree locking,
However, the general purpose nature of the lock manager provides the ability to support a
variety of locking protocols. Currently, all locks are issued at the granularity of a page
(the size of a buffer in the buffer pool) which is identified by two 4-byte integers (a file
id and page number). This provides the necessary information to extend the Lock Manager to
perform hierarchical locking [GRAY76]. The current implementation does not support locks
at other granularities and does not promote locks; these are obvious future additions to
the system.

IT an incoming lock request cannot be granted, the requesting process is queued for the
lock and descheduled. When a lock is released, the wait queue is traversed and any newly
compatible locks are granted. Locks are located via a file and page hash table and are
chained both by object and by transaction, facilitating rapid traversal of the lock table
during transaction commit and abort.

The primary interfaces to the lock manager are lock, unlock, and lock_unlock all. Lock
obtains a new lock for a specific object. There are also two variants of the lock request,
lock_upgrade and lock_downgrade, which allow the caller to atomically trade a lock of one
type for a lock of another. Unlock releases a specific mode of lock on a specific object.

Lock unlock_all releases all the locks associated with a specific transaction.

3.2.4. The Process Manager

The Process Manager acts as a user-level scheduler to make processes wait on unavailable
locks and pending buffer cache 1/0. For each process, a semaphore is maintained upon which
that process waits when it needs to be descheduled. When a process needs to be run, its
semaphore is cleared, and the operating system reschedules it. No sophisticated scheduling
algorithm is applied; if the lock for which a process was waiting becomes available, the
process is made runnable. It would have been possible to change the kernel®s process
scheduler to interact more efficiently with the lock manager, but doing so would have
compromised our commitment to a user-level package.

3.2.5. The Transaction Manager

The Transaction Manager provides the standard interface of txn_begin, txn_commit, and
txn-abort, It keeps track of all active transactions, assigns unique transaction
identifiers, and directs the abort and commit processing. When a txn_begin is issued, the
Transaction Manager assigns the next available transaction identifier, allocates a
per-process transaction structure in shared memory, increments the count of active
transactions, and returns the new transaction identifier to the calling process. The
in-memory transaction structure contains a pointer into the lock table for locks held by
this transaction, the last log sequence number, a transaction state (idle, running,
aborting, or committing), an error code, and a semaphore identifier.

At commit, the Transaction Manager calls log_commit to record the end of transaction and
to flush the log. Then it directs the Lock Manager to release all locks associated with the
given transaction. If a transaction aborts, the Transaction Manager calls on log_unroll to
read the transaction®s log records and undo any modifications to the database. As in the
commit case, it then calls lock unlock all to release the transaction®s locks.

3.2.6. The Record Manager

The Record Manager supports the abstraction of reading and writing records to a database.

We have modified the database access routines db(3) [BSD91] to call the log, lock, and
buffer managers. In order to provide functionality to perform undo and redo, the Record
Manager defines a collection of log record types and the associated undo and redo routines.
The Log Manager performs a table lookup on the record type to call the appropriate routines.
For example, the B-tree access method requires two log record types: insert and delete. A
replace operation is implemented as a delete followed by an insert and is logged

accordingly.

(db(3))

LIBTP

log log_commit log_roll [log_unroll log

(LSN) LSN log_read

- 10 -

log_commit

4.2

redo

undo

log

Log_unroll

Log_roll

id

-11 -

section
undo
redo
least-recently-used(LRU)
CHOU85

B-tree

txn_begin txn_commit txn_abort

txn_begin
log_commit
(flush)
log_unroll
undo
lock unlock_all
db(3)
undo redo
undo redo

B-tree

-12 -

3.3. Application Architectures

The structure of LIBTP allows application designers to trade off performance and
protection. Since a large portion of LIBTP"s functionality is provided by managing
structures in shared memory, its structures are subject to corruption by applications when
the library is linked directly with the application. For this reason, LIBTP is designed to
allow compilation into a separate server process which may be accessed via a socket
interface. In this way LIBTP"s data structures are protected from application code, but
communication overhead is increased. When applications are trusted, LIBTP may be compiled
directly into the application providing improved performance. Figures two and three show
the two alternate application architectures.

There are potentially two modes in which one might use LIBTP in a server based
architecture. In the first, the server would provide the capability to respond to requests
to each of the low level modules (lock, log, buffer, and transaction managers).
Unfortunately, the performance of such a system is likely to be blindingly slow since
modifying piece of data would require three or possibly four separate communications: one
to lock the data, one to obtain the data, one to log the modification, and possibly one to
transmit the modified data. Figure four shows the relative performance for retrieving a
single record using the record level call versus using the lower level buffer management
and locking calls. The 2:1 ratio observed in the single process case reflects the
additional overhead of parsing eight commands rather than one while the 3:1 ratio observed
in the client/server architecture reflects both the parsing and the communication
overheard. Although there may be applications which could tolerate such performance, it
seems far more feasible to support a higher level interface, such as that provided by a

query language (e.g. SQL [SQL86]).

- 13 -

Although LIBTP does not have an SQL parser, we have built a server application using the
toolkit command language (TCL) [OUST90]. The server supports a command line interface
similar to the subroutine interface defined in db(3). Since it is based on TCL, it provides

control structures as well.

LIBTP

LIBTP

(corruption) LIBTP

LIBTP

LIBTP

LIBTP SQL

(TCL) db(3)

4_4. Transaction Protected Access Methods

The B-tree and length recno (record number) access methods have been modified to provide

- 14 -

transaction protection. Whereas the previously published interface to the access routines
had separate open calls for each of the access methods, we now have an integrated open call
with the following calling conventions:

DB *dbopen (const char *file, int flags, int mode, DBTYPE type,

int dbflags, const void *openinfo)

where file is the name of the file being opened, flags and mode are the standard arguments
to open(2), type is one of the access method types, dbflags indicates the mode of the
buffer pool and transaction protection, and openinfo is the access method specific
information. Currently, the possible values for dbflags are DB_SHARED and DB_TP indicating
that buffers should be kept in a shared buffer pool and that the file should be transaction
protected.

The modifications required to add transaction protection to an access method are quite
simple and localized.

1. Replace file open with buf_open.

2. Replace file read and write calls with buffer manager calls (buf_get, buf _unpin).

3. Precede buffer manager calls with an appropriate (read or write) lock call.

o

. Before updates, issue a logging operation.

5. After data have been accessed, release the buffer manager pin.

6. Provide undo/redo code for each type of log record defined.
The following code fragments show how to transaction protect several updates to a B-tree.
In the unprotected case, an open call is followed by a read call to obtain the meta-data for
the B-tree. Instead, we issue an open to the buffer manager to obtain a file id and a buffer
request to obtain the meta-date as shown below.

char *path;

int fid, flags, len, mode;

/* Obtain a file id with which to access the buffer pool */

- 15 -

fid = buf_open(path, flags, mode);

/* Read the meta data (page 0) for the B-tree */

if (tp_lock(fid, 0, READ_LOCK))

return error;

meta_data_ptr = buf_get(fid, 0, BF_PIN, &len);

The BF_PIN argument to buf get indicates that we wish to leave this page pinned in memory
so that it is not swapped out while we are accessing it. The last argument to buf get
returns the number of bytes on the page that were valid so that the access method may
initialize the page if necessary.

Next, consider inserting a record on a particular page of a B-tree. In the unprotected
case, we read the page, call_bt_insertat, and write the page. Instead, we lock the page,
request the buffer, log the change, modify the page, and release the buffer.

int fid, len, pageno; /* ldentifies the buffer */

int index; /* Location at which to insert the new pair */

DBT *keyp, *datap; /* Key/Data pair to be inserted */

DATUM *d; /* Key/data structure to insert */

/* Lock and request the buffer */

it (tp_lock(fid, pageno, WRITE_LOCK))

return error;

buffer_ptr = buf_get(fid, pageno, BF PIN, &len);

/* Log and perform the update */

log_insdel (BTREE_INSERT, fid, pageno, keyp, datap);

_bt_insertat(buffer_ptr, d, index);

buf_unpin(buffer_ptr);

Succinctly, the algorithm for turning unprotected code into protected code is to replace

read operations with lock and buf-get operations and write operations with log and

- 16 -

buf_unpin operations.

B-Tree
DB *dbopen
file flags
type dbflags
openinfo
dbflags DB_SHARED DB_TP
open buf_open
read write
(buf_get,buf _unpin)
undo/redo
B-tree
open

217 -

mode

open(2)

B-tree

read

id

char *path;

buf_get BF _PIN

buf get

B-tree

_bt_insertat

int fid, len, pageno;
read

lock buf_get write log buf_unpin

UNIX

LIBTP

-18 -

txn_commit

txn_abort

)

UNIX

LIBTP

-19 -

txn_commit

txn_abort

@

(b)

©

€Y)

@

- 20 -

API

@

®)
€y

AP1

API

-21 -

@

API

API(txn_commit

©

@
)

@

4)

€y

-22 -

API

@

)

- 23 -

&)
UNIX

LIBTP

txn_commit

txn_abort

UNIX

- 24 -

- 25 -

)

)

ordering constraints

(Berkeley Software Distribution)

- 26 -

Margo Seltzer Berkeley DB

®

)

- 27 -

)

)

)

)

LIBTP

- 28 -

)

)

- 29 -

)

- 30 -

txn_commit

txn_commit

@

©

-31 -

txn_abort

txn_abort

(b)

)

)

4)

-32 -

@

¢y

)

)

€y

-33 -

)

)

)

buf_open

open

buf open buf _get, buf unpin
buf get buf _unpin

read write

-34 -

open

read,

write

open file

path

open

open

buf_open

buf_open

buf_open

)

)

-35 -

- 36 -

)

@

)

®

€Y

)

-37 -

LIBTP

- 38 -

)

¢y

txn_abort

-39 -

txn_commit

txn_commit

txn_abort

¢y
€)

txn_commit txn_abort

- 40 -

- 4] -

@)

@

4)

€y

®)

- 42 -

Berkeley Software Distribution

- 43 -

- 44 -

)

creat open

creat

creat

open

0_CREAT

©)) €y

- 45 -

creat

@D

open read write buf_open buf _get buf_unpin
buf open buf get buf _unpin
open read write
@)
open

- 46 -

4)

€y

@

)

- 47 -

®

€y

)

)

@

- 48 -

€y

®

- 49 -

- 50 -

