主

- 1 第1事件及び第2事件の各債権者らの申立てをいずれも却下する。
- 2 申立費用は、第1事件及び第2事件の各債権者らの負担とする。

理由

第1 申立ての趣旨

1 第1事件

債務者は、愛媛県西宇和郡伊方町九町コチワキ3番耕地40番地3において 伊方発電所3号機の原子炉を運転してはならない。

2 第2事件第1事件と同旨

第2 事案の概要

1 本件は、第1事件及び第2事件の各債権者ら(両者をまとめて以下「債権者ら」という。)において、債務者が設置、運転している発電用原子炉施設である伊方発電所(以下「本件発電所」という。)3号炉(以下「本件原子炉」という。)及びその附属施設(本件原子炉とまとめて以下「本件原子炉施設」という。)は、地震、火山の噴火、津波等に対する安全性が十分でないために、これらに起因する過酷事故を生じる可能性が高く、そのような事故が起これば外部に大量の放射性物質が放出されて債権者らの生命、身体、精神及び生活の平穏等に重大かつ深刻な被害が発生するおそれがあるとして、債務者に対し、人格権に基づく妨害予防請求権に基づき、本件原子炉の運転の差止めを命じる仮処分を申し立てた事案である。

なお, 第1事件及び第2事件は, 当審において併合審理された。

- 2 前提事実(争いのない事実又は疎明資料等により容易に認定できる事実(特に認定根拠を掲記しないものは、争いがないか、審尋の全趣旨により容易に認定できる事実である。))
 - (1) 当事者

- ア 債権者らは、広島市西区、広島市安佐南区、広島市中区又は松山市に居住する者である。債権者らのうち松山市に居住する者の肩書住所地と本件原子炉施設の距離は約60km、その余の債権者らの肩書住所地と本件原子炉施設との距離は約100kmである。
- イ 債務者は、一部地域を除く四国4県へ電力供給を行う一般電気事業者であるとともに、愛媛県西宇和郡伊方町九町コチワキ3番耕地40番地3所在の本件発電所において、核原料物質、核燃料物質及び原子炉の規制に関する法律(以下「原子炉等規制法」という。)2条5項所定の発電用原子炉を3機(1号炉ないし3号炉)設置している発電用原子炉設置者(同法43条の3の8第1項)である。

(2) 本件発電所の概要等

ア 本件発電所は、佐田岬半島の瀬戸内海側に位置している。

イ 本件発電所1号炉は、債務者において昭和47年11月29日に内閣総理大臣から原子炉設置許可処分を受けた上、昭和52年9月30日に営業運転を開始した発電用原子炉であり、同2号炉は、債務者において同年3月30日に内閣総理大臣から原子炉設置変更(増設)許可処分を受けた上、昭和57年3月19日に営業運転を開始した発電用原子炉である。もっとも、同1号炉は、平成23年9月4日に定期検査に入ったまま、平成28年5月10日付けで廃止され、同2号炉は、平成24年1月13日に定期検査に入った後、現在まで稼働していない。

本件発電所3号炉(本件原子炉)は、債務者において昭和59年5月24日,通商産業大臣(当時)に対し、原子炉設置変更(増設)許可申請を行い、昭和61年5月26日、同許可処分を受けた上、同年11月1日に建設工事を開始し、平成6年12月15日に営業運転を開始した発電用原子炉である。本件原子炉の定格電気出力は、89万キロワットである。

その後、本件原子炉は、平成23年4月29日に定期検査に入った(そ

の後の経過については後記(9)のとおり。)。

(3) 原子力発電所の仕組み

ア 核分裂の仕組み

全ての物質は元素(原子)からなっており、原子の中心には原子核(陽子と中性子の集合体)がある。

1個の原子核が複数の原子核に分裂する現象を核分裂という。ウラン235の原子核は、核分裂の際に、大きなエネルギーとともに、核分裂生成物(放射性物質であるヨウ素131、キセノン133等)及び2個又は3個の中性子を発生させる。ウラン235は、核分裂性核種の一つとされ、中性子を吸収すると2個(まれに3個)に核分裂しやすい性質を有し、その核分裂によって発生した中性子の一部が別のウラン235の原子核に吸収されて次の核分裂を起こす(核分裂が次々と繰り返されることを核分裂連鎖反応という。)。

もっとも、ウラン235の原子核は、速度の遅い中性子(いわゆる熱中性子)に対する場合に核分裂しやすいところ、ウラン235の原子核の核分裂の際に生じる中性子は速度が速いため(いわゆる高速中性子)、効率的にウラン235の核分裂を起こすには、核分裂によって生じた中性子の速度を熱中性子のそれにまで減速させる必要がある。また、核分裂を安定的に持続させていくためには、核分裂を起こす中性子の数を調整することも必要である。このため、原子炉では、前者の目的を達するために減速材を、後者の目的を達するために制御材を、それぞれ用いている。

イ 原子力発電の仕組み

原子力発電は、核分裂連鎖反応によって持続的に生じるエネルギーを熱エネルギーとして取り出し、この熱エネルギーによって発生させた蒸気でタービンを回転させて行う発電である。

ウ原子炉の種類

減速材を用いる原子炉のうち、減速材として軽水を用い、かつ、減速材を冷却材(炉心を冷却するとともに、原子炉で発生したエネルギーを取り出すための媒介となるもの)と兼用するものを軽水炉という。また、軽水炉のうち、冷却材を原子炉内で沸騰させ、その蒸気をタービンに直接送って発電するタイプのものを沸騰水型原子炉といい、一次冷却系と二次冷却系を有し、原子炉で発生させた高温高圧の一次冷却材の持つ熱エネルギーを蒸気発生器を介して二次冷却系に伝達し、二次冷却系で発生した蒸気をタービンに送って発電するタイプのものを加圧水型原子炉という。

本件原子炉は,加圧水型原子炉である。

(4) 本件原子炉施設の基本構成

ア 本件原子炉

(ア) 原子炉容器

原子炉容器は、燃料集合体等を収納する、胴部の厚さが約20cmの容器であり、内部は一次冷却材である軽水で満たされている。原子炉容器の材料は低合金鋼(鉄にマンガン、モリブデン、ニッケル等の合金元素を加えた金属材料)であるが、内面の一次冷却材と接触する部分には、腐食を防ぐためにステンレス鋼(鉄にクロム等を含有させた金属材料)を内張りしている。

(イ) 燃料集合体

燃料集合体は、原子力発電の燃料を成型し、焼き固めたペレットを燃料被覆管の中に詰めた燃料棒を束ねたものである。

本件原子炉の燃料集合体は、二酸化ウラン又はウラン・プルトニウム混合酸化物を用いた燃料(いわゆるMOX燃料)からなる直径及び高さとも約10mm円柱状のペレットを、長さ約3.9mのジルコニウム基合金製の管(燃料被覆管)に入れて密封溶接して燃料棒とし、これを17行17列の正方格子状に東ねた燃料集合体を157体装荷している。

(ウ) 制御材

a ホウ素

ホウ素は、中性子を吸収しやすい性質を利用し、一次冷却材に添加して一次冷却材中のホウ素濃度を調整することによって、原子炉内の中性子の数を調整する目的で用いられる。一次冷却材中のホウ素濃度の調整は、平常運転時においては、体積制御タンク、充てんポンプ、ホウ酸タンク、ホウ酸ポンプ等の設備から構成される化学体積制御設備において濃度を調整したホウ酸水を一次冷却設備に注入するなどして行われる。

ホウ素を用いた制御は、主に、燃料集合体の取替えやその後の核分 裂の進行に伴い原子炉中のウラン235の濃度が変化することによる 比較的ゆっくりした反応度の変化に対する制御に用いられる。

b 制御棒

制御棒は、本件原子炉においては、燃料集合体の上部から挿入できるよう組み込まれており、制御棒の先端(下端)は、常に燃料集合体の中に入った状態となっている。また、1つの燃料集合体に挿入される制御棒の全ては上部で東ねられており、これを制御棒クラスタと呼ぶ。この制御棒クラスタを制御棒クラスタ駆動装置によって保持するとともに、原子炉内で上下に駆動させることで、原子炉内の中性子の数を調整し、核分裂の連鎖を安定した状態に制御する。通常運転時には、ほぼ全ての制御棒が引き抜かれた状態で原子炉内の核分裂反応は安定しているが、タービン出力が変化するなど急な原子炉出力調整の必要が生じた際には自動で上下駆動し原子炉出力を安定的に制御する。

また、緊急時には、原子炉トリップ遮断器(制御棒クラスタ駆動装置と電源を接続又は切断するための設備)が開放されて制御棒クラスタ駆動装置への電源が遮断され、制御棒クラスタを保持する力がなく

なることにより、制御棒クラスタが自重で落下する仕組みとなっている(この仕組みを用いて緊急に制御棒を炉心に挿入し核反応を停止させることを、原子炉トリップという。)。

イ 一次冷却設備

一次冷却設備は、原子炉内で核分裂によって生じた熱エネルギーによって高温となった一次冷却材を蒸気発生器に送り、蒸気発生器内において一次冷却材と二次冷却材との間で熱交換を行い、その結果低温になった一次冷却材を、再び原子炉に戻し循環させる設備である。

一次冷却設備は、主に加圧器、蒸気発生器及び一次冷却材ポンプから構成されており、原子炉及びこれらの設備は、一次冷却材管によって接続され循環回路を形成している。本件原子炉はこの回路を3組有している(ただし、加圧器は3組で一つ設置)。このような一次冷却設備による循環回路は、放射性物質を閉じ込めるために全体として一つの障壁を形成しており、この障壁となる範囲のことを原子炉冷却材圧力バウンダリと呼称している。

ウニ次冷却設備

二次冷却設備は、蒸気発生器内で熱交換を行って一次冷却材を除熱するとともに蒸気となった二次冷却材をタービンに送り、発電した後の蒸気を水に変えた後で、再び蒸気発生器に戻すための設備であり、主蒸気逃がし弁、タービン、復水器、主給水ポンプ、補助給水設備等から構成されている。なお、二次冷却材は、放射性物質を含む一次冷却材とは隔離されているため、放射性物質を含んでいない。

工 電気設備

(ア) 発電機

発電機は、二次冷却設備のタービンに同軸で直結され、タービンが回 転するエネルギーをもとに電気を発生させる設備である。発生した電気 は、需要家への供給だけでなく、本件発電所内の機器に供給されることになっている。

(イ) 外部電源

外部電源は、本件発電所とは別の発電所で発電した電気を本件発電所に供給するための設備であり、発電機の停止中に本件発電所内の機器を運転するのに必要な電気の供給源として位置づけられている。本件原子炉においては、外部電源として、川内変電所からの1ルート2回線、大洲変電所からの2ルート4回線の送電線及び亀浦変電所からの配電線が用意されている。

(ウ) 非常用ディーゼル発電機

非常用ディーゼル発電機は、発電機が停止しかつ外部電源が喪失した場合に、発電所の安全を確保するために必要な設備を起動するための設備である。非常用ディーゼル発電機は、本件原子炉においては、1台で必要な容量を有するものを2台、各々建屋内の別の部屋に備え、それぞれ7日間にわたって必要な電力を供給することができるだけの燃料を備蓄している。また、本件発電所においては、各原子炉をケーブルで接続して相互に電力を融通できるようにしており、例えば、本件原子炉の非常用ディーゼル発電機が2台とも使えない場合に他の原子炉の非常用ディーゼル発電機を本件原子炉の電源として使用することができる。

(工) 直流電源設備

直流電源設備は、2組のそれぞれ独立した蓄電池、充電器、直流コントロールセンタ等で構成され、発電機が停止し、かつ、外部電源及び非常用ディーゼル発電機からの交流電源を全て喪失した場合であっても、原子炉の温度、圧力等を監視・制御するために必要な機器に電気を供給することを目的としている。

才 工学的安全施設

(ア) 原子炉格納容器

放射性物質を閉じ込める施設として、原子炉格納容器及びコンクリート 速へい壁を設けている。

原子炉格納容器は、原子炉及び一次冷却設備等を囲っている気密性の極めて高い密封容器で、炭素鋼を材料としている。その内容量は、約6万7400㎡であり、胴部の厚さは約4.5cmである。原子炉格納容器は、原子炉冷却材圧力バウンダリを構成する配管の破損により一次冷却材喪失事故(Loss of Coolant Accident。以下「LOCA」という。)等が発生した場合に圧力障壁となり、放射性物質の放出に対する障壁となる。

また,コンクリート遮へい壁は,原子炉格納容器のさらに外側をコンクリートで囲んでおり,胴部の厚さは最大で約140cmである。

原子炉格納容器とコンクリート遮へい壁の間には密閉された円環状空間であるアニュラス部を設け、二重格納の機能を持たせている。

(イ) 非常用炉心冷却設備

非常用炉心冷却設備は、仮にLOCA等が発生して一次冷却材が減少 し原子炉を冷却する機能が低下した場合であっても、原子炉にホウ酸水 を注入することで、燃料の重大な損傷を防止するための設備である。非 常用炉心冷却設備には、蓄圧注入系、高圧注入系及び低圧注入系があり、 それぞれ複数の系統を設けている。

蓄圧注入系は、LOCA等が発生し、一次冷却系の圧力が低下すると、自動的に、ホウ酸水を原子炉容器内に注入する。ホウ酸水は蓄圧タンク内に封入した窒素ガスの圧力によって注入されるため、外部電源等の駆動源は必要としない。

高圧注入系及び低圧注入系は、電動ポンプにより、ホウ酸水を原子炉 容器内に注入する。高圧注入系で用いるポンプは高圧注入ポンプ、低圧 注入系で用いるポンプは余熱除去ポンプ(低圧注入系は,通常の原子炉停止時において原子炉の崩壊熱等を除去し一次冷却材の温度を下げる機能も有しており,余熱除去系の役割の一部を担う。)であり,系統ごとに1台ずつ設置されている。

(ウ) 原子炉格納容器スプレイ設備

原子炉格納容器スプレイ設備は、格納容器スプレイポンプ、スプレイリング等で構成されている。LOCA等が発生した場合に、核分裂により生成された放射性ヨウ素を吸収しやすくなる薬剤を添加しながら原子炉格納容器内にホウ酸水を噴霧することで、原子炉格納容器内の水蒸気を凝固させて圧力上昇を抑えるとともに、原子炉格納容器内に浮遊する放射性ヨウ素等を除去する機能を持つ。

(エ) アニュラス空気再循環設備

アニュラス空気再循環設備は、アニュラス排気ファン、アニュラス排気フィルタユニット等で構成されている。LOCA等が発生した場合に、アニュラス部を負圧に保つ一方、原子炉格納容器からアニュラス部に漏えいした空気を浄化しながら再循環させ、もって、上記漏えいに係る空気に含まれる放射性物質が外部へ放出されることを抑制するための設備である。本件原子炉においては、アニュラス排気フィルタユニットは、ヨウ素除去効率95%以上、粒子除去効率99%以上の性能を有する。

カ 使用済燃料ピット

使用済燃料ピットは、原子炉から取り出された使用済燃料を貯蔵する設備である。本件原子炉においては燃料取扱棟内に設置されており、壁面及び底部を鉄筋コンクリート造とし、その内面にステンレス鋼板を内張りした構造物である。

使用済燃料ピットは,通常,水位12mのホウ酸水で満たされており, 使用済燃料から発生する崩壊熱を除去するために冷却設備により継続的に 冷却され、水温約40℃以下に保たれている。使用済燃料ピット内では、 長さ約4mの使用済燃料を燃料ラックに垂直に立てた状態で収納し、使用 済燃料からの放射線を遮へいするべく、使用済燃料の上端から水面までの 水位は約8m確保されている。そして、使用済燃料ピットの水位等は常時 監視されており、蒸発等によって失われる使用済燃料ピット水を補給する ための設備を備えている。また、使用済燃料ピットは、外部からの注水を 想定し、その水面の高さを構内道路面と同レベルとし、かつ、構内道路に 近接した場所に配置されている。

- (5) 本件原子炉における耐震設計(2011年東北地方太平洋沖地震まで)
 - ア 従来,原子力安全委員会は,発電用原子炉施設の耐震設計に関する安全 審査を行うに当たり,昭和53年11月8日付け決定に基づき,同年9月 29日に原子力委員会が安全審査の経験をふまえ,地震学,地質学等の知 見を工学的に判断して策定した「発電用原子炉施設に関する耐震設計審査 指針」を用いてきた。

そして、原子力安全委員会は、昭和56年6月12日付けで原子炉安全 基準専門部会から提出のあった報告書の内容を検討した結果、静的地震力 の算定法等について、新たな知見により見直すことが妥当であると考えら れたため、静的地震力の算定法等について見直しを行うこととし、同年7 月20日付けで、上記指針に代わるものとして、「発電用原子炉施設に関 する耐震設計審査指針」(乙19。ただし、平成18年に改訂される前の もの。以下「旧耐震指針」という。)によるべき旨を決定した。旧耐震指 針は、平成13年3月に一部改訂された。

旧耐震指針においては、過去の地震から見て原子炉施設の敷地に影響を与えるおそれのある地震及び近い将来敷地に影響を与えるおそれのある活動度の高い活断層による地震のうち、最も影響の大きいものを、工学的見地から起こることを予期することが適当と考えられる地震として「設計用

最強地震」を設定すること、また、敷地周辺の活断層の性質、地震地体構造及び直下地震を考慮し、設計用最強地震を超える地震の発生が地震学的見地から否定できない場合には、これを「設計用限界地震」として設定することが求められていた。

債務者は、本件原子炉を新設するに当たり、旧耐震指針に基づいて耐震設計を行い、設計用最強地震によってもたらされる地震動を基準地震動 S 1 (最大加速度 2 2 1 ガル) とし、設計用限界地震によってもたらされる地震動を基準地震動 S 2 (最大加速度 4 7 3 ガル)と策定した。

イ その後,原子力安全委員会は,平成18年9月19日,旧耐震指針の策定から上記時点までにおける地震学及び地震工学に関する新たな知見の蓄積並びに発電用軽水炉施設の耐震設計技術の改良及び進歩を反映し,旧耐震指針を全面的に見直した結果として,「発電用原子炉施設に関する耐震設計審査指針」(乙21。以下「改訂耐震指針」という。)によるべき旨を決定した。

改訂耐震指針においては、基準地震動を基準地震動Ssに一本化することとし、これを「敷地ごとに震源を特定して策定する地震動」と「震源を特定せず策定する地震動」とに分けて策定することとした。敷地ごとに震源を特定して策定する地震動の地震動評価は、応答スペクトルに基づく地震動評価において設定した設計用応答スペクトルと、断層モデルを用いた手法による地震動評価において検討対象とする地震ごとに設定した応答スペクトルとを基に、それらを比較して策定することとされた。また、震源を特定せず策定する地震動は、旧耐震指針の基準地震動S2における直下地震の考慮に対応し、敷地近傍において発生する可能性がある内陸地殻内地震の全てを事前に評価し得るとは言い切れないことから、敷地近傍における詳細な調査の結果にかかわらず、全ての申請において共通的に考慮すべき地震動であると意味づけられた。

- ウ 原子力安全・保安院は、平成18年9月20日、原子力事業者に対し、 稼働中又は建設中の発電用原子炉施設等につき、改訂耐震指針に照らした 耐震安全性評価(以下「耐震バックチェック」という。)の実施と、その ための実施計画の作成を求めた(甲C10)。これを受けて、債務者は、 改訂耐震指針に基づき、敷地ごとに震源を特定して策定する地震動のうち、 応答スペクトルに基づく地震動評価において求めた検討対象地震による地 震動の応答スペクトルを包絡させるなどして設定した設計用応答スペクト ルを基に基準地震動Ss-1(最大加速度570ガル)を策定し、断層モ デルを用いた地震動評価の結果、基準地震動Ss-1の応答スペクトルを 一部の周期で超えた地震動を基準地震動Ss-2(最大加速度413ガル) として策定した。なお、債務者は、震源を特定せず策定する地震動につい ては、全ての周期において基準地震動Ss-1の応答スペクトルに包絡さ れるとして、基準地震動として設定しなかった。
- (6) 2011年東北地方太平洋沖地震及び東京電力株式会社福島第一原子力発 電所における事故

平成23年3月11日,2011年東北地方太平洋沖地震(以下「東北地方太平洋沖地震」という。)が発生した。同地震は、三陸沖の太平洋海底を震源とする海溝型のプレート間地震(Mw(モーメントマグニチュード)9.0)であった。

その当時、東京電力株式会社(以下「東京電力」という。)福島第一原子力発電所(以下「福島第一原発」という。)には、いずれも沸騰水型軽水炉である発電用原子炉1号機ないし6号機が設置されていた。このうち、運転中であった1号機ないし3号機は、地震を感知した直後に自動的に緊急停止したものの、地震による外部からの送電設備の損傷や津波等により、結果的に、1号機、2号機は全電源を、3号機は全交流電源を、いずれも喪失した。このため、1号機ないし3号機は、冷却機能を失い、相次いで炉心溶融を起

こした。そして、原子炉建屋の水素爆発(1号機及び3号機)、ブローアウトパネルの脱落による原子炉建屋内部と外気との連絡(2号機)及びベント(原子炉格納容器内の圧力を下げるために放射性物質を含む空気をあえて排出する措置。1号機及び3号機)等により、放射性物質が大量に外部に放出された。(福島第一原発において上記のとおり生じた一連の事象をまとめて以下「福島第一原発事故」という。甲C10)

福島第一原発事故の結果,避難区域指定は福島県内の12市町村に及び,避難した人数は,平成23年8月29日の時点において,合計約14万6520人に達した(甲C10)。また,東京電力福島原子力発電所事故調査委員会法に基づいて設置された東京電力福島原子力発電所事故調査委員会(以下「国会事故調査会」という。)の調査によれば,福島第一原発を中心とする半径20㎞圏内にある7つの病院と介護老人保健施設に入院し又は入所していた者で,平成23年3月末までに死亡した者は,合計で少なくとも60人に上った(甲C10)。

(7) ストレステストの実施

福島第一原発事故の後、原子力安全委員会は、経済産業大臣に対し、既設の発電用原子炉施設について、設計上の想定を超える外部事象に対する頑健性に関して総合的に評価することなどを要請した。そこで、内閣官房長官、経済産業大臣及び内閣府特命担当大臣は、平成23年7月11日、新たな安全評価を実施することとした。これを受け、原子力安全・保安院は、同月22日、債務者を含む各電力会社等に対し、福島第一原発事故を踏まえた既設の発電用原子炉施設の安全性に関する総合評価(各発電用原子炉施設において想定した基準地震動Ssを超える地震が発生したときに、安全上重要な施設や機器等がどの程度まで安全性を確保できるか(どの程度まで燃料の損傷が生じずに耐えられるか)という発電用原子炉施設の総合的な余裕を定量的に評価するもの。以下「ストレステスト」という。)の実施を行い、その結

果について報告をするよう求めた。

債務者は、上記求めに応じて本件原子炉施設につきストレステストを実施し、当時の基準地震動Ss(最大加速度570ガル)に対するクリフエッジ (燃料が重大な損傷に至る状態等、事象が進展、急変し状況が大きく変わる境)を求め、本件原子炉については、1.50倍の安全裕度を有していることを確認した。

(8) 福島第一原発事故を受けた規制の強化

- ア 原子力安全委員会は、平成24年3月、東北地方太平洋沖地震によって得られた知見等を踏まえ、約9か月に渡る公開の場での検討を行い、津波に関わる安全設計方針の明確化をはじめ、プレート間地震、プレート内地震の震源領域や地震規模等の不確かさ(ばらつき)の考慮に関する規定の追加などを内容とした耐震指針等の見直しを行った(乙125)。
- イ 平成24年6月27日,原子力規制委員会設置法(平成24年法律第4 7号。以下「設置法」という。)が新たに施行された。
 - (ア) 設置法附則に基づき,原子力基本法及び原子炉等規制法がそれぞれ次のとおり改正された(以下「本件改正」という。)。

a 原子力基本法

同法の基本方針として,原子力利用は「安全の確保を旨として」行われることがもともと規定されていたところ(同法2条1項),その安全確保については,「確立された国際的な基準を踏まえ,国民の生命,健康及び財産の保護,環境の保全並びに我が国の安全保障に資することを目的として,行うものとする」との規定が追加された(同条2項)。

b 原子炉等規制法

同法の目的として, 「原子炉の設置及び運転等」に関し, 「大規模な自然災害及びテロリズムその他の犯罪行為の発生も想定した必要な

規制」を行うこと、「もって国民の生命、健康及び財産の保護、環境の保全並びに我が国の安全保障に資することを目的とする」ことが追加され(同法1条)、原子力規制委員会が設置許可基準に係る規則を定めること(同法43条の3の6第1項4号)、保安措置に重大事故対策を含めること(同法43条の3の22第1項等)、当該基準に適合していない場合には、発電用原子炉の設置者に対して、使用停止等の処分を行うことができる旨規定すること(同法43条の3の23第1項)、40年の運転期間の制限の原則を設けること(同法43条の3の32)などが新たに定められた。

(イ) 設置法は、福島第一原発事故を契機に明らかとなった原子力の研究、開発及び利用(以下「原子力利用」という。)に関する政策に係る縦割り行政の弊害を除去し、並びに一の行政組織が原子力利用の推進及び規制の両方の機能を担うことにより生ずる問題を解消するため、原子力利用における事故の発生を常に想定し、その防止に最善かつ最大の努力をしなければならないという認識に立って、確立された国際的な基準を踏まえて原子力利用における安全の確保を図るため必要な施策を策定し、又は実施する事務を一元的につかさどるとともに、その委員長及び委員が専門的知見に基づき中立公正な立場で独立して職権を行使する原子力規制委員会を設置し、もって国民の生命、健康及び財産の保護、環境の保全並びに我が国の安全保障に資することを目的とするものである(同法1条)。

原子力規制委員会は、設置法に基づいて設置された機関であって、国家行政組織法3条2項の規定に基づく環境省の外局として位置づけられる(設置法2条)。そして、原子力規制委員会は、国民の生命、健康及び財産の保護、環境の保全並びに我が国の安全保障に資するため、原子力利用における安全の確保を図ることを任務とし(同法3条)、同任務

を達成するために原子力利用における安全の確保に関することなどの事務をつかさどる(同法4条)。その組織は、委員長及び委員4人からなり(同法6条1項)、独立してその職権を行うこととされているところ(同法5条)、委員長及び委員は、人格が高潔であって、原子力利用における安全の確保に関して専門的知識及び経験並びに高い識見を有する者のうちから、両議院の同意を得て、内閣総理大臣が任命するものとされている(同法7条1項)。また、原子力規制委員会は、その所掌事務について、法律若しくは政令を実施するため、又は法律若しくは政令の特別の委任に基づいて、原子力規制委員会規則を制定することができるものとされている(同法26条)。

原子力規制委員会には、その事務を処理させるため、事務局として原子力規制庁が置かれ、原子力規制庁長官は、原子力規制委員会委員長の命を受けて庁務を掌理する(同法27条)。なお、原子力規制庁の職員は、幹部職員のみならず、それ以外の職員についても、原子力利用の推進に係る事務を所掌する行政組織への配置転換を認めないこととされる(いわゆる「ノーリターンルール」。同法附則6条2項)。

ウ 原子力規制委員会の発足に伴い、原子力安全委員会は廃止された。

このため、原子力安全委員会が策定した原子炉設置変更許可における基準等を原子力規制委員会規則等として定めることが必要となった(原子炉等規制法43条の3の6第1項4号参照)。そこで、原子力規制委員会は、同委員会の下に「発電用軽水型原子炉の新規制基準に関する検討チーム」(以下「新規制基準検討チーム」という。)、「発電用軽水型原子炉施設の地震・津波に関わる規制基準に関する検討チーム」(以下「地震津波基準検討チーム」という。)等を置き、検討を行った。

このうち, 新規制基準検討チームは, 平成24年10月以降, 国際原子力機関(以下「IAEA」という。)等の国際機関の安全基準, 米国, 英

国等の主要国の各規制内容のほか、福島第一原発事故を踏まえた各事故調 査委員会の主な指摘事項の内容に関するものを整理し、これらと安全設計 審査指針等とを比較した上で、国や地域等の特性に配慮しつつ、我が国の 規制として適切な内容を検討した。また、上記の頃、新規制基準検討チー ムは、原子力安全委員会の下で取りまとめられた耐震指針等の改訂案のう ち、地震及び津波に関わる安全設計方針として求められている各要件につ いて改めて分類、整理し、必要な見直しを行った上で基準骨子案の構成要 素とする方針を示した。地震津波基準検討チームは、この方針に基づき、 平成24年11月以降、地震及び津波について、IAEA安全基準、米国、 フランス及びドイツの各規制内容のほか、福島第一原発事故を踏まえた各 事故調査委員会の主な指摘事項のうち耐震関係基準の内容に関するものを 整理し、これらと改訂耐震指針とを比較した上で、国や地域等の特性に配 慮しつつ、我が国の規制として適切な内容を検討した。また、地震津波基 準検討チームは、発電用原子炉施設における安全対策への取組みの実態を 確認するため、電気事業者に対するヒアリングを実施するとともに、東北 電力株式会社(以下「東北電力」という。)女川原子力発電所の現地調査 を実施し、これらの結果も踏まえ、安全審査の高度化を図るべき事項につ いての検討を進めた。(以上につき, 乙124~127)

エ 上記ウの各検討チームは、原子力規制委員会担当委員、多様な学問分野の外部有識者をはじめ、原子力規制庁及び旧独立行政法人原子力安全基盤機構の職員らが出席して検討を重ねた。このうち、新規制基準検討チームは平成24年10月から翌25年6月までに23回、地震津波基準検討チームは平成24年11月から翌25年6月までに13回、それぞれ会合を開いた。

原子力規制委員会は、上記検討に先立ち、平成24年10月、電気事業 者等に対する原子力安全規制等に関する決定を行うに当たり、その参考と して、外部の有識者(以下「外部有識者」という。)から意見を聴く場合において検討会等の中立性を適切に確保することを目的として、利益相反に関連する可能性のある情報として、外部有識者の電気事業者等との関係に関する情報の公開を行うための運用等を定め、上記各検討チームを構成する外部有識者についても、上記運用に従って電気事業者等との関係について自己申告させるとともに、その申告内容を同委員会のウェブサイト上で公開した。また、原子力規制委員会は、上記各検討チームが開いた会合については、当該会合に供された資料及び議事録も同様の方法により公開した。(以上につき、乙75、124~126、131、132)

- オ 原子力規制委員会は、上記検討の過程で、平成25年4月から同年5月にかけ、原子力規制委員会規則等に加え、同委員会における審査基準に関する内規等について、意見公募手続(この種の手続を以下「パブリックコメント」ということがある。)に付した。地震津波基準検討チームは同年6月6日に開いた第13回会合において地震に関する審査基準を定めた内規について、新規制基準検討チームは同月3日に開いた第23回会合において地震を除く各種審査基準を定めた内規や原子力規制委員会規則等について、それぞれ同手続で募った意見を踏まえて各々その検討を遂げた。その結果、そのころ、後記カ(ア)の一連の規制基準をめぐる法令が整備されるとともに(以下「新規制基準」という。)、それを受けた内規である同(イ)の各審査基準の策定に至った。設置法、設置許可基準規則等は、同年7月8日に施行された。(以上につき、乙68、131、132)
- カ(ア) 発電用原子炉を設置しようとする者は、政令で定めるところにより、原子力規制委員会の許可(原子炉設置許可)を受けなければならず(原子炉等規制法43条の3の5第1項)、原子力規制委員会は、上記許可の申請があった場合においては、その申請が同法43条の3の6第1項各号所定の基準に適合していると認めるときでなければ、上

記許可をしてはならない(同法43条の3の6第1項)。そして,原子炉設置許可を受けた者が,使用の目的,発電用原子炉の型式,熱出力及び基数,発電用原子炉及びその附属施設の位置,構造及び設備等の事項(同法43条の3の5第2項2ないし5号又は8ないし10号に掲げる事項)を変更しようとするときは,政令で定めるところにより,原子力規制委員会の許可(原子炉設置変更許可)を受けなければならないが(同法43条の3の8第1項),この場合にも同法43条の3の6第1項が準用される(同法43条の3の8第2項)。

ところで、上記原子炉設置許可及び原子炉設置変更許可の基準の一つである「発電用原子炉施設の位置、構造及び設備が核燃料物質若しくは核燃料物質によって汚染された物又は発電用原子炉による災害の防止上支障がないものとして原子力規制委員会規則で定める基準に適合するものであること」(原子炉等規制法43条の3の6第1項4号、43条の3の8第2項)にいう「原子力規制委員会規則」が「実用発電用原子炉及びその附属施設の位置、構造及び設備の基準に関する規則(平成25年6月28日原子力規制委員会規則第5号。以下「設置許可基準規則」という。)である。

(イ) そして,設置許可基準規則の解釈を示したものが「実用発電用原子炉及びその附属施設の位置,構造及び設備の基準に関する規則の解釈」 (原規技発第1306193号(平成25年6月19日原子力規制委員会決定)。以下「設置許可基準規則解釈」という。乙68)である。

また,原子力規制委員会は,平成25年6月19日,原子炉設置許可及び原子炉設置変更許可の審査に活用するため,「基準地震動及び耐震設計方針に係る審査ガイド」(以下「地震ガイド」という。乙39),

「基準津波及び耐津波設計方針に係る審査ガイド」 (以下「津波ガイド」 という。 乙156) 及び「原子力発電所の火山影響評価ガイド」 (以下 「火山ガイド」という。乙147)等の内規を策定した。

(9) 本件原子炉の運転再開

ア 債務者は、平成25年7月8日、原子力規制委員会に対し、本件原子炉に係る原子炉設置変更許可を申請するとともに(以下「本件申請」という。)、工事計画認可及び保安規定変更認可の各申請をした。

本件申請については、平成27年5月21日から同年6月19日までの間、原子力規制委員会が作成した本件原子炉施設の変更をめぐる審査書案に対する科学的・技術的意見の公募手続(パブリックコメント)が実施された上、同年7月15日に開催された平成27年度第19回原子力規制委員会において、「四国電力株式会社伊方発電所の発電用原子炉設置変更許可申請書(3号原子炉施設の変更)に関する審査書」の案が了承され、同申請に対する原子力規制委員会の許可処分がなされた(乙13、77)。また、工事計画認可申請については平成28年3月23日に、保安規定変更認可申請については同年4月19日に、それぞれ原子力規制委員会の認可処分がされた(乙78、79)。

- イ その後、本件原子炉については、同年9月7日、安全対策工事の内容が 認可を受けた工事計画どおりであることなどを確認する検査(使用前検査) が終了し、その頃、通常運転を再開した。
- 10 本件原子炉施設の耐震設計等(東北地方太平洋沖地震後-基準地震動)
 - ア 新規制基準等の内容について(乙39,68)

設置許可基準規則4条3項は、「耐震重要施設は、その供用中に当該耐 震重要施設に大きな影響を及ぼすおそれがある地震による加速度によって 作用する地震力(以下「基準地震動による地震力」という。)に対して安 全機能が損なわれるおそれがないものでなければならない」と定めている ところ、同規則解釈別記2第5項は、基準地震動は、最新の科学的・技術 的知見を踏まえ、敷地及び敷地周辺の地質・地質構造、地盤構造並びに地 震活動性等の地震学及び地震工学的見地から想定することが適切なものとし、次の方針により策定することと定めている(なお、基準地震動の妥当性を厳格に確認するため、設置許可基準規則及び同規則解釈をさらに敷衍した内容の地震ガイドが定められている。)。

- (ア) 基準地震動は、「敷地ごとに震源を特定して策定する地震動」及び 「震源を特定せず策定する地震動」について、解放基盤表面における水 平方向及び鉛直方向の地震動としてそれぞれ策定すること。
- (イ) 「敷地ごとに震源を特定して策定する地震動」は、内陸地殻内地震、 プレート間地震及び海洋プレート内地震について、敷地に大きな影響を 与えると予想される地震(以下「検討用地震」という。)を複数選定し、 選定した検討用地震ごとに、不確かさを考慮して応答スペクトルに基づ く地震動評価及び断層モデルを用いた手法による地震動評価を、解放基 盤表面までの地震波の伝播特性を反映して策定すること。なお、上記の 「敷地ごとに震源を特定して策定する地震動」については、次に示す方 針により策定すること。
 - a 内陸地殻内地震,プレート間地震及び海洋プレート内地震について,活断層の性質や地震発生状況を精査し,中・小・微小地震の分布,応力場,及び地震発生様式(プレートの形状・運動・相互作用を含む。)に関する既往の研究成果等を総合的に検討し,検討用地震を複数選定すること。
 - b 内陸地殻内地震に関しては、次に示す事項を考慮すること。
 - (a) 震源として考慮する活断層の評価に当たっては、調査地域の地形・地質条件に応じ、既存文献の調査、変動地形学的調査、地質調査、地球物理学的調査等の特性を活かし、これらを適切に組み合わせた調査を実施した上で、その結果を総合的に評価し活断層の位置・形状・活動性等を明らかにすること。

- (b) 震源モデルの形状及び震源特性パラメータ等の評価に当たっては, 孤立した短い活断層の扱いに留意するとともに,複数の活断層の連動を考慮すること。
- c プレート間地震及び海洋プレート内地震に関しては、国内のみならず世界で起きた大規模な地震を踏まえ、地震の発生機構及びテクトニクス的背景の類似性を考慮した上で震源領域の設定を行うこと。
- d 上記 a で選定した検討用地震ごとに、後記(a)の応答スペクトルに基づく地震動評価及び(b)の断層モデルを用いた手法による地震動評価を実施して策定すること。なお、地震動評価に当たっては、敷地における地震観測記録を踏まえて、地震発生様式及び地震波の伝播経路等に応じた諸特性(その地域における特性を含む。)を十分に考慮すること。
 - (a) 応答スペクトルに基づく地震動評価

検討用地震ごとに、適切な手法を用いて応答スペクトルを評価の うえ、それらを基に設計用応答スペクトルを設定し、これに対して、 地震の規模及び震源距離等に基づき地震動の継続時間及び振幅包絡 線の経時的変化等の地震動特性を適切に考慮して地震動評価を行う こと

- (b) 断層モデルを用いた手法に基づく地震動評価 検討用地震ごとに、適切な手法を用いて震源特性パラメータを設 定し、地震動評価を行うこと。
- e 上記dの基準地震動の策定過程に伴う各種の不確かさ(震源断層の長さ、地震発生層の上端深さ・下端深さ、断層傾斜角、アスペリティの位置・大きさ、応力降下量、破壊開始点等の不確かさ、並びにそれらに係る考え方及び解釈の違いによる不確かさ)については、敷地における地震動評価に大きな影響を与えると考えられる支配的なパラメ

- ータについて分析した上で,必要に応じて不確かさを組み合わせるな ど適切な手法を用いて考慮すること。
- f 内陸地殻内地震について選定した検討用地震のうち、震源が敷地に極めて近い場合は、地表に変位を伴う断層全体を考慮した上で、震源モデルの形状及び位置の妥当性、敷地及びそこに設置する施設との位置関係、並びに震源特性パラメータの設定の妥当性について詳細に検討するとともに、これらの検討結果を踏まえた評価手法の適用性に留意の上、上記eの各種の不確かさが地震動評価に与える影響をより詳細に評価し、震源の極近傍での地震動の特徴に係る最新の科学的・技術的知見を踏まえた上で、さらに十分な余裕を考慮して基準地震動を策定すること。
- g 検討用地震の選定や基準地震動の策定に当たって行う調査や評価は、 最新の科学的・技術的知見を踏まえること。また、既往の資料等について、それらの充足度及び精度に対する十分な考慮を行い、参照すること。なお、既往の資料と異なる見解を採用した場合及び既往の評価と異なる結果を得た場合には、その根拠を明示すること。
- h 施設の構造に免震構造を採用する等,やや長周期の地震応答が卓越 する施設等がある場合は、その周波数特性に着目して地震動評価を実 施し、必要に応じて他の施設とは別に基準地震動を策定すること。
- (ウ) 「震源を特定せず策定する地震動」は、震源と活断層を関連付けることが困難な過去の内陸地殻内の地震について得られた震源近傍における観測記録を収集し、これらを基に、各種の不確かさを考慮して敷地の地盤物性に応じた応答スペクトルを設定して策定すること。なお、上記の「震源を特定せず策定する地震動」については、次に示す方針により策定すること。
 - a 解放基盤表面までの地震波の伝播特性を必要に応じて応答スペクト

ルの設定に反映するとともに,設定された応答スペクトルに対して, 地震動の継続時間及び振幅包絡線の経時的変化等の地震動特性を適切 に考慮すること。

- b 上記の「震源を特定せず策定する地震動」として策定された基準地震動の妥当性については、申請時における最新の科学的・技術的知見を踏まえて個別に確認すること。その際には、地表に明瞭な痕跡を示さない震源断層に起因する震源近傍の地震動について、確率論的な評価等、各種の不確かさを考慮した評価を参考とすること。
- (エ) 基準地震動の策定に当たっての調査については、目的に応じた調査手法を選定するとともに、調査手法の適用条件及び精度等に配慮することによって、調査結果の信頼性と精度を確保すること。また、上記の「敷地ごとに震源を特定して策定する地震動」及び「震源を特定せず策定する地震動」の地震動評価においては、適用する評価手法に必要となる特性データに留意の上、地震波の伝播特性に係る次に示す事項を考慮すること。なお、上記の「敷地ごとに震源を特定して策定する地震動」及び「震源を特定せず策定する地震動」については、それぞれが対応する超過確率を参照し、それぞれ策定された地震動の応答スペクトルがどの程度の超過確率に相当するかを把握すること。
 - a 敷地及び敷地周辺の地下構造(深部・浅部地盤構造)が地震波の伝播特性に与える影響を検討するため、敷地及び敷地周辺における地層の傾斜、断層及び褶曲構造等の地質構造を評価するとともに、地震基盤の位置及び形状、岩相・岩質の不均一性並びに地震波速度構造等の地下構造及び地盤の減衰特性を評価すること。なお、評価の過程において、地下構造が成層かつ均質と認められる場合を除き、三次元的な地下構造により検討すること。
 - b 上記 a の評価の実施に当たって必要な敷地及び敷地周辺の調査につ

いては、地域特性及び既往文献の調査、既存データの収集・分析、地 震観測記録の分析、地質調査、ボーリング調査並びに二次元又は三次 元の物理探査等を適切な手順と組合せで実施すること。

イ 債務者による基準地震動の策定について

債務者は、次のとおりの調査、検討に基づき、基準地震動を策定した (乙11, 13, 31, 35, 40, 42)。

- (ア) 敷地ごとに震源を特定して策定する地震動
 - a 検討用地震の候補とする地震の選定
 - (a) 被害地震の調査

債務者は、本件原子炉施設の敷地(以下「本件敷地」ということがある。)周辺の被害地震について、地震史料及び明治以降の地震観測記録を基に、地震の震央位置、規模等をまとめた地震カタログ(「最新版 日本被害地震総覧」、「宇津カタログ(1982)」、「気象庁地震カタログ」等)による調査を行った。この調査によって抽出した地震について、規模及び位置等に関する最新の知見をもとに本件敷地に影響を及ぼす地震として、本件敷地の震度が5弱(1996年以前は旧気象庁震度階級でV)程度以上であったと推定される地震を以下のとおり選定した。

- ・ 土佐その他南海・東海・西海諸道の地震(684年, M8 1/4)
- 日向灘の地震(1498年, M71/4)
- 安芸・伊予の地震(1649年, M6.9)
- 宝永地震(1707年, M8.6)
- 安政南海地震(1854年, M8.4)
- 伊予西部の地震(1854年, M7.0)
- 豊後水道の地震(1968年、M6.6)

(b) 国の機関等による知見

地震調査研究推進本部(以下「地震本部」という。)は、長期的な観点から、南海トラフ沿いの地震について、四国沖から浜名湖沖までの領域を震源域とする地震を想定し、その評価のとりまとめを行っているところ、平成13年に、南海トラフ沿いの地震の発生位置(領域)及び震源域の形態を、既往の調査結果から総合的に判断して一定のモデルを提案し(想定南海地震(地震本部、M8.4))、また、平成17年には、日向灘のプレート間地震についても、1968年日向灘地震及び1662年の日向灘の地震に係る強震動評価を実施して断層モデルを示した(日向灘の地震(地震本部、M7.6))。

中央防災会議は、平成15年、「東南海・南海地震等に関する専門調査会」を設置し、東南海・南海地震などの過去の地震発生例を参考にして、東海地震、東南海地震及び南海地震をさまざまに組み合わせたケースを想定した検討を行い、想定南海地震として一定のモデルを設定した(想定南海地震(中央防災会議、M8.6))。

内閣府の「南海トラフの巨大地震モデル検討会」(以下「内閣府検討会」という。)は、南海トラフの巨大地震を対象として、過去に南海トラフで発生した地震の特徴やフィリピン海プレートの構造等に関する特徴などの現時点の科学的知見に基づきあらゆる可能性を考慮した最大クラスの巨大な地震として、駿河湾から日向灘までを震源断層域とするM9クラスを想定した検討を行った。そして、南海トラフの巨大地震として4ケースのモデルを設定している。本件敷地に最も影響があると考えられるのは、強震動生成域が最も敷地の近傍に配置されている「陸側ケース」(内閣府検討会、M9.

0)) である。

(c) 本件敷地周辺の地震発生様式及び地震発生状況

本件敷地周辺の地震活動は、太平洋側沖合の南海トラフから陸側へ沈み込む海洋プレートと陸域プレートとの境界付近で発生するプレート間地震、海洋プレート内で発生する地震、陸域及び沿岸で発生する内陸地殻内地震の3つに大きく分けることができる。気象庁一元化震源のうち本件敷地周辺で発生したM5未満の地震(微小地震)の分布状況の調査、本件敷地周辺で発生した過去の地震に関する知見等を踏まえると、本件敷地周辺で発生する地震の主な特徴は概ね次のとおりであった。

- ① プレート間地震 南海トラフ沿いでM8程度の大地震が約1 00年から150年の間隔で発生し、日向灘周辺ではM7程度 の地震が十数年から数十年に一度の割合で発生していること
- ② 海洋プレート内地震 安芸灘や伊予灘など瀬戸内海の西部から豊後水道付近のやや深いところ(約30~70kmの深さ)で M7程度の地震が発生しており,過去に本件敷地周辺の沿岸地域に被害をもたらした地震が知られていること
- ③ 内陸地殻内地震 本件敷地近傍ではほとんど発生しておらず, 発生が認められるものもM2未満のものである一方,大分県別 府付近でM7程度の地震が発生していること

(d) 活断層の分布状況

債務者は、本件敷地周辺の活断層の分布を把握するため、文献調査、地形調査、地表地質調査、海域地質調査、地球物理学的調査等の調査を行った。この結果、本件敷地の北方には敷地前面海域の断層群(42km)、伊予セグメント(23km)、川上セグメント(36km)などから構成される中央構造線断層帯が四国陸域から佐田岬半島西端部の北方まで分布し、本件敷地の沖合約8kmを通過するこ

と, さらにその西方には, 別府湾-日出生断層帯 (76km) が豊予海峡から別府市西方まで分布すること, これら以外にも, 伊予灘北方には上関断層 (F-15), 上関断層 (F-16)等の活断層が,本件敷地の南方には, 八幡浜の五反田断層 (2km), 宇和海のF-21断層 (22km)が, それぞれ分布することが分かった。

このうち、中央構造線断層帯は、近畿地方の金剛山地の東縁から 淡路島南部の海域を経て四国北部を東西に横断し、伊予灘に達する 断層帯で全体としての長さは約360kmとされ、過去の活動時期の 違いなどから、①金剛山地東縁(長さ約23km)、②和泉山脈南縁 (長さ約44~52km)、③紀淡海峡-鳴門海峡(長さ約43~5 1km)、④讃岐山脈南縁-石鎚山脈北縁東部(長さ約130km)、 ⑤石鎚山脈北縁(長さ約30km)及び⑥石鎚山脈北縁西部-伊予灘 (長さ約130km)の6つの区間に区分されている(乙33)。そ して、地震本部では、中央構造線断層帯の将来の活動について、上 記6つの区間が個別に活動する可能性、複数の区間が同時に活動す る可能性、これら6つの区間とは異なる範囲が活動する可能性、さ らには、断層帯全体が同時に活動する可能性も否定できないとして いる(乙33)。

また、別府一万年山断層帯は、ほぼ東西方向の多数の正断層から構成されているが、断層の走向や変位の向きから、別府湾一日出生断層帯(76km)、大分平野一由布院断層帯(40km)等に区分されている(乙34)。本件敷地に最も近い別府湾一日出生断層帯は、東部と西部で最新活動時期が異なり、それぞれが単独で活動すると推定されているが、全体が同時に活動する可能性、さらには、その東端が中央構造線断層帯に連続している可能性があると指摘されている(乙34)。

一方、債務者は、本件敷地周辺において地質調査を実施し、断層の分布形態、活動様式等の性状を特定した結果、中央構造線断層帯を構成する活断層として、北東方向から南西方向へ順に、①川上断層(断層の長さ約36km)、②伊予断層(同約23km)、③敷地前面海域の断層群(断層群の長さ約42km、本件敷地の沖合約8kmに分布)、④豊予海峡断層(同約23km)が存在すること、さらに上記各断層間には、断層破壊の末端(ジョグ)を示唆する地質構造が分布すること(上記①と②の断層の間には重信引張性ジョグ(長さ約12km)、同②と③の断層の間には串沖引張性ジョグ(同約13km),同③と④の断層の間には三崎沖引張性ジョグ(同約13km))が確認された。

(e) 地震の分類

債務者は、以上で示した地震について、地震発生様式ごとに整理・分類し、検討用地震の候補とする地震を選定した。

i 内陸地殼内地震

上記(d)で示した活断層の分布状況に基づき,本件敷地周辺に おいて考慮すべき活断層による内陸地殼内地震として,以下のと おり選定した。

中央構造線断層帯による地震

敷地前面海域の断層群 (5 4 km。両端のジョグのそれぞれ中間まで延伸したもの)

伊予断層(33km。上記と同じ)

金剛山地東縁-伊予灘 (360km)

石鎚山脈北縁西部-伊予灘 (130km)

- 別府湾-日出生断層帯による地震
- F-21断層による地震

- ・ 五反田断層による地震(15km。長さが短く,孤立した 断層であることから,地表で認められる活断層の長さが必 ずしも震源断層の長さを示さない可能性を考慮したもの)
- 上関断層(F-15につき48km, F-16につき32km)

ii プレート間地震

上記(a)及び(b)を考慮し、南海トラフ沿いの地震及び日向灘における地震として以下の地震を選定した。

- ・ 土佐その他の南海・東海・西海諸道の地震(684年, M
 8 1/4)
- · 宝永地震(1707年, M8.6)
- 安政南海地震(1854年, M8.4)
- 想定南海地震(地震本部, M8.4)
- · 想定南海地震(中央防災会議, M8.6)
- ・ 南海トラフの巨大地震(陸側ケース) (内閣府検討会, M9.0)
- ・ 日向灘の地震(1498年, M71/4)
- ・ 日向灘の地震(地震本部, M7.6)

iii 海洋プレート内地震

南海トラフから安芸灘〜伊予灘〜豊後水道海域へ西北西の方向に沈み込むフィリピン海プレートで発生する海洋プレート内地震について、上記(a)及び(b)の検討結果を踏まえ、以下の地震を選定した。

- 安芸・伊予の地震(1649年, M6.9)
- 伊予西部の地震(1854年, M7.0)
- 豊後水道の地震(1968年、M6.6)

- 九州の深い地震(M7.3)
- 日向灘の浅い地震(M7.4)
- アウターライズ地震(M7.4)

b 検討用地震の選定

債務者は、上記 a (e)のとおり選定した地震から、本件敷地に特に大きな影響を与えると予想される地震を地震発生様式の分類ごとに検討用地震として選定することとし、検討用地震の選定にあたっては、応答スペクトルに基づく地震動評価を行い、以下のとおり検討用地震を選定した。

(a) 内陸地殼内地震

中央構造線断層帯による地震は、敷地前面海域の断層群を含む区間として複数の断層長さを考慮するケースを検討用地震の候補として選定しているが、検討用地震の選定にあたっては、敷地前面海域の断層群(54km)で代表させて検討を行った。その結果、候補となる各地震(上記a(e)①)のうち、本件敷地への影響が最も大きいと考えられる地震は、敷地前面海域の断層群による地震となった。

なお、敷地前面海域の断層群は、中央構造線断層帯の一部であり、 地震本部において中央構造線断層帯の敷地前面海域の断層群を含む 複数区間の連動の可能性及び中央構造線断層帯と別府一万年山断層 帯との連動の可能性が言及されていることを踏まえ、検討用地震と しては、これらの連動を含む区間を考慮した断層群による地震を選 定した。

(b) プレート間地震

候補となる各地震のうち、応答スペクトルによる地震動評価の結果、本件敷地への影響が最も大きいと考えられる地震は、内閣府検 計会による南海トラフの巨大地震(陸側ケース)となったことから、 これを検討用地震として選定した。

(c) 海洋プレート内地震

候補となる各地震のうち、応答スペクトルによる地震動評価の結果、本件敷地への影響が最も大きいと考えられる地震は、1649年安芸・伊予の地震となったことから、これを検討用地震として選定した。

c 地震動評価のための敷地地盤の評価

債務者は、本件敷地地盤の増幅特性の有無を把握すべく次のとおりの地下構造評価を実施した。

(a) 地震観測記録を用いた評価

債務者は、本件敷地地盤において、昭和50年から地震観測(強震及び微小地震)を実施しているところ、これまでに観測された比較的振幅の大きな地震は、全て海洋プレート内地震であり、内陸地殻内地震、プレート間地震について振幅の大きな記録は得られていない。債務者は、本件発電所で観測した地震のうち、距離減衰式の一つであるNoda et. al (2002)(以下「耐専式」という。なお、以下において略称されている文献の表題等については、いずれも別紙文献等目録記載のとおりである。)との比較が可能な比較的規模の大きい内陸地殻内地震を用いて、観測記録の応答スペクトルと耐専式により推定した応答スペクトルの比をとって増幅特性の検討を行った。その結果、本件敷地の岩盤が耐専式の想定する地盤よりも硬いこと、どれも遠方の地震であり観測記録の振幅が小さいことなどから、どの地震についても短周期側では観測値が予測値よりも小さい傾向を示しており、特に顕著な増幅特性を示す地震はなかった。

次に、債務者は、対象とする地震の規模をM2程度にまで広げて、 地震波の到来方向によって特異性が見られないかの検討を行ったが、 到来方向によって増幅特性が異なるような傾向はなかった。

(b) 深部ボーリング等による評価

債務者は、本件発電所建設当時、最深深度500mのボーリング 調査を実施済みであったが、平成22年から深部ボーリング調査を 実施し、本件敷地のさらに地下深部までの地質及び地盤物性を把握 するとともに、深部の地下構造に起因する地震動の増幅特性がない ことを確認した。深部ボーリング調査は、本件敷地の南西部(荷揚 岸壁付近)において、深度2000m, 500m, 160m, 5m の4孔のボーリング孔を掘削するもので、深度2000mまでの連 続したボーリングコアを採取し、これを観察して地質柱状図を作成 するとともに、深部ボーリング孔内において物理検層やオフセット VSP探査を実施した。そして、従来のボーリング調査の結果と合 わせて地下構造の検証を行った。また、地下深部における地震動を 観測し、地表で観測した地震動との比較を行うことにより実際に地 震動が増幅しないことを検証することなどを目的に、各ボーリング 孔底部に地震計を設置し、地震観測を開始した。深部ボーリング調 査の結果は次のとおりであり、本件敷地の地盤は速度構造的に特異 性を有する地盤ではないことを確認した。

i 地質構造

深部ボーリング調査の調査地点では、地表付近に埋立土や風化 岩が薄く分布するものの深度約50mで新鮮な岩盤となり、深度 約50mから深度約2000mまで堅硬かつ緻密な結晶片岩が連 続する。本件敷地の地盤を構成する緑色片岩の下位に三波川変成 岩類のうち主に泥質片岩が分布し、緑色片岩、珪質片岩及び砂質 片岩の薄層を挟む。地表部の緑色片岩を主体とする地層とその下 位の泥質片岩を主体とする地層の境界面は緩く北へ傾斜している と推定され、本件原子炉の炉心位置では深度約350m以深が泥質片岩主体となっている。

ii 速度構造

深部ボーリング孔内での物理検層の結果によると、P波速度及びS波速度は地下深部に至るにつれて漸増し、地盤の密度は岩種に応じてやや変化するものの、深度方向への大きな増減傾向は認められない。

また、オフセットVSP探査(地表に震源を設置して地震波を 人工的に発生させ、地下の地層境界面(反射面)で反射した地震 波をボーリング孔内の受振器で観測することにより、ボーリング 孔周辺の地下構造を調査する手法)の結果によると、地下深部ま でほぼ水平な反射面が連続し(オフセットVSP探査による反射 面と反射法探査による反射面とを比較しても連続性に問題はな い。)、大規模な断層を示唆する不連続、地震動の特異な増幅の 要因となる低速度域及び褶曲構造は認められず、本件敷地地盤の 速度構造(地震波の速度分布)は、乱れがなく、均質である。

(c) 解放基盤表面の設定

債務者は、以上のような本件敷地地盤に係る状況を総合的に判断し、原子炉建屋及びその周りの地盤は、約2600m/秒のS波速度を持つ堅固な岩盤が十分な広がりと深さを持っていることが確認されていることを踏まえ、敷地高さと同じ標高10mを解放基盤表面として設定した。

d 地震動評価

(a) 内陸地殼内地震

i 基本震源モデル

債務者が内陸地殼内地震の検討用地震として選定したのは敷地

前面海域の断層群(中央構造線断層帯)の地震であった。債務者は、その基本震源モデルを設定するに当たり、断層長さにつき、中央構造線断層帯と九州側の別府一万年山断層帯が全区間(480km)において連動するケース(以下「480kmケース」という。)と設定する一方、上記区間の中で部分破壊による地震が起こることを想定することとし、四国西部のセグメント(130km)が連動するケース(以下「130kmケース」という。)及び敷地前面海域セグメント(54km)が単独で活動するケース(以下「54kmケース」という。)をも設定し、それぞれ不確かさを考慮した解析を行うこととした。

また、断層モデルを用いた手法による地震動評価において必要 なパラメータ(地震モーメント, 平均応力降下量, アスペリテ ィの応力降下量等)を設定する上で用いるスケーリング則につい ては、 壇ほか(2011)を基本として採用した。 さらに、 480kmケ ース及び130kmケースではFujii and Matsu'ura (2000) のス ケーリング則を,5.4 kmケースでは入倉・三宅(2001)によって算 出される地震モーメントに Fujii and Matsu'ura (2000)の平均 応力降下量を組み合わせて用いる手法(以下「入倉・三宅の手法」 という。)をそれぞれ基本震源モデルに織り込むこととした。債 務者が,480kmケース及び130kmケースにつき Fujii and Matsu' ura (2000)を採用したのは、現在提案されている主要な スケーリング則のうち、同手法が壇ほか(2011)と並び長大断層を 含んだデータに基づいて開発された手法の一つであり、 地震本部 が作成した平成21年12月21日改訂に係る「震源断層を特定 した地震の強震動予測手法(「レシピ」)」(以下「レシピ」とい う。乙38)においても長大断層の知見としてこの手法による平

均応力降下量を用いる手法が提案されていることを踏まえたもの, 54kmケースにつき入倉・三宅の手法を採用したのは,レシピに おいてこれらを用いる手法が提案されていることを踏まえたもの であった。

ii 不確かさの考慮

債務者は、応答スペクトルに基づく地震動評価において、480km,130km及び54kmの3ケースそれぞれについて、不確かさの考慮として、断層傾斜角が鉛直のモデルと北傾斜のモデルを考慮することとした。さらに、債務者は、応答スペクトルに基づく地震動評価の過程で、断層長さを69kmとするケース(以下「69kmケース」という。)を設定し、これについても、不確かさの考慮として断層傾斜角が鉛直のモデルと北傾斜のモデルとをそれぞれ評価し、基準地震動Ssの策定において考慮することとした。

なお、債務者は、69kmケースは、ジョグで破壊が停止せずさらに長い区間で連動することを意味するが、もともと、ジョグは、断層の破壊が停止し、乗り移る領域のため、変位量は低減するはずであって、科学的には考え難い連動ケースであると考えており、新規制基準が定められる以前の地震動評価においては不確かさの一つとして考慮していたが、新規制基準実施後においては、69kmケースを包含する480kmケース及び130kmケースを基本震源モデルとして設定することにより、69kmケースの評価はそれに含まれるものと理解していた。もっとも、債務者は、平成26年9月12日の原子力規制委員会の審査会合において、69kmケースの地震動評価についても応答スペクトル法での評価を求められたことから、平成26年11月7日付けコメント回答において

その評価を示すことにしたものであった。

また、債務者は、断層モデルで用いた地震動評価における不確かさの考慮にあたり、①破壊開始点につき、地震動評価への影響が大きくなるように断層東下端、中央下端及び西下端の3か所又は5か所に設定し、②アスペリティ深さにつき、上記①と同様の趣旨で断層上端にアスペリティを配置した上、③断層長さにつき、480㎞ケースに加え、130㎞ケース、54㎞ケースでも評価することとし、上記①ないし③の不確かさを、いずれも基本震源モデルに織り込むこととした。その一方、債務者は、④短周期レベルの応力降下量、⑤断層傾斜角(北傾斜)、⑥断層傾斜角(南傾斜)、⑦破壊伝播速度及び⑧アスペリティの平面位置については、基本震源モデルの不確かさに重畳させる、独立した不確かさとして考慮することとした。

債務者は、具体的には、上記④ないし⑧の不確かさを次のとおり考慮した。

上記④について 2007年新潟県中越沖地震(以下「新潟県中越沖地震」という。)の震源特性として、短周期レベルが平均的な値の1.5倍程度大きかったという指摘があるところ、これは、ひずみ集中帯に位置する逆断層タイプの地震という地域性によると考えられるため、本来ならば、過去の地震観測記録に基づいて本件原子炉施設周辺で発生する地震の震源特性の分析を行うべきところであるが、本件原子炉施設周辺では規模の大きい内陸地殻内地震は発生していないことを踏まえ、新潟県中越沖地震の知見を反映し、短周期レベルと相関関係のある応力降下量を基本震源モデルの1.5

- ・ 上記⑤について 敷地前面海域の断層群の震源断層は横ずれ断層と推定されるため傾斜角が高角度である可能性が高いが,活断層としての中央構造線が北へ傾斜する地質境界と一致する可能性を完全には否定できないことから,横ずれ断層については,傾斜角90度の場合(以下「鉛直モデル」という。)のみならず,北に30度傾斜させた場合(以下「北傾斜モデル」という。)の評価を行う。
- ・ 上記⑥について 断層傾斜角のばらつきを踏まえ,敷地側に傾斜する場合を考慮し,横ずれ断層について南に80度傾斜させた場合(以下「南傾斜モデル」という。)の評価を行う。
- ・ 上記⑦について 海外の長大な活断層の破壊伝播速度がS 波速度を超える事例があるとの知見を踏まえ、480 km及び 130 kmの各ケースについては破壊伝播速度V r = V s (V s は地震発生層のS波速度)の場合の評価を行い、54 kmケースについては、平均的な破壊伝播速度の不確かさに関する 知見を踏まえ破壊伝播速度V r = 0. 87 V s の場合の評価を行う。
- ・ 上記⑧について 基本的にはジョグにアスペリティは想定 されないものの、完全には否定できないことから、敷地正面 のジョグにアスペリティを配置する場合の評価を行う。

なお、Fujii and Matsu'ura (2000)を用いた480km及び1 30kmの各ケースでは、壇ほか(2011)による検討結果から、影響 が比較的大きかった応力降下量と破壊伝播速度を考慮することと した。

ちなみに,各基本震源モデルを解析したところ,断層長さの基

本となる480kmから断層長さを変えても地震動レベルはほぼ変わらない結果が得られた。したがって、130km及び54kmの各不確かさケースの地震動レベルについても、断層長さ480kmにおける各不確かさケースの地震動レベルとほぼ等しいと推定される。このため、54kmケースで入倉・三宅の手法を用いる場合の各不確かさケース(480kmケースでは入倉・三宅の手法を用いていない。)と、54kmケースで壇ほか(2011)を用いる場合における破壊伝播速度の不確かさケース(480kmの不確かさケースとは設定値が異なる。)とを除き、130km及び54kmの各不確かさケースの評価結果については、480kmの各不確かさケースの評価結果で代表させることとした。

iii 応答スペクトルに基づく地震動評価

応答スペクトルに基づく地震動評価においては、480km, 130km及び54kmの3ケースに加え、敷地前面海域の断層群(42km)の両端にあるジョグ(各13km)のさらに両端まで連動することを想定した69kmケースのそれぞれについて、断層傾斜角が鉛直のモデルと北傾斜のモデルを考慮した。

また、適用する手法(距離減衰式)については、耐専式を基本とするものの、130kmケース、69kmケース及び54kmケースのうち、それぞれ断層傾斜角を鉛直とする3つのケースについては、耐専式による評価結果が過大となるとして、耐専式以外の複数の距離減衰式を用いた評価を行った。上記3ケースを除くケースについては、耐専式を含む複数の距離減衰式によって評価を行った。

そして、債務者は、地震規模の設定については、断層長さに基づいて、松田(1975)で紹介されている断層長さ(L)と地震のマ

グニチュード (M) との関係を示す経験式 (以下「松田式」という。) により設定することとした。

iv 断層モデルを用いた手法による地震動評価

断層モデルを用いた手法による地震動評価を行うにあたっては, まず、中央構造線断層帯及び別府-万年山断層帯の連動を考慮し た480kmの基本震源モデルについて、統計的グリーン関数法及 び経験的グリーン関数法により評価し、両者を比較した。なお、 経験的グリーン関数法に用いる要素地震は、2001年芸予地震 (以下「芸予地震」という。) の余震である安芸灘の地震(M5. 2) の本件敷地における観測記録を用いた。適用にあたっては、 当該地震がスラブ内地震であるため、内陸地殻内地震の評価に用 いることができるよう、距離及びパラメータ (地震モーメント、 応力降下量等)を補正した。上記比較の結果,統計的グリーン関 数法及び経験的グリーン関数法のいずれによった場合も整合的で あることが確認されたものの、原子炉施設に影響の大きい周期0. 1秒付近の地震動については経験的グリーン関数法の結果の方が 厳しい結果を与えるものであったことから、断層モデルを用いた 手法による地震動評価においては、経験的グリーン関数法を採用 した。

(b) プレート間地震

i 基本震源モデル

基本震源モデルとしては、検討用地震として選定した、内閣府 検討会の南海トラフの巨大地震(陸側ケース)(M9.0)を採 用することとした。

ii 不確かさの考慮

南海トラフの巨大地震(陸側ケース)に設定された強震動生成

域に加え、さらに本件敷地直下にも強震動生成域を追加配置する 不確かさの考慮を行った。

応答スペクトルに基づく地震動評価 応答スペクトルに基づく地震動評価では、パラメータとしてM8.3を採用し、耐専式に基づき評価を行った。

iv 断層モデルを用いた手法による地震動評価

プレート間地震については適切な要素地震が得られていないことや, 内閣府検討会が統計的グリーン関数法を用いていることを 踏まえ, 統計的グリーン関数法及びハイブリッド合成により評価 を行った。

(c) 海洋プレート内地震

i 基本震源モデル

海洋プレート内地震については、1649年安芸・伊予の地震(M6.9)を検討用地震として選定したが、基本震源モデルの設定にあたっては、地震発生位置と規模の不確かさをあらかじめ織り込むこととし、本件敷地下方に既往最大規模(1854年伊予西部地震のM7.0)の地震を仮定するなどし、「想定スラブ内地震」として地震動評価を行った。

ii 不確かさの考慮

不確かさの考慮においては、1649年安芸・伊予の地震(M6.9)を再現したモデルをM7.0に較正したケース、本件敷地の真下に想定する地震規模をM7.2としたケース、アスペリティの位置を断層上端に配置したケース、本件敷地東方の領域に水平に近い断層面を考慮したケース(M7.4)を設定した。

iii 応答スペクトルに基づく地震動評価

応答スペクトルに基づく地震動評価では、耐専式に基づき評価

を行った。

iv 断層モデルを用いた手法による地震動評価

断層モデルを用いた手法による地震動評価では、本件敷地で得られた芸予地震の余震である安芸灘の地震の観測記録を要素地震とした経験的グリーン関数法により評価を行った。

(イ) 震源を特定せず策定する地震動

債務者は、震源を特定せず策定する地震動について、次のとおり評価 した。

a 加藤ほか(2004)の知見

震源を特定せず策定する地震動に関する代表的な知見として,加藤ほか(2004)がある。震源を特定せず策定する地震動は,改訂耐震指針で規定されていたものとその考え方において違いはないため,従来同様に,加藤ほか(2004)が提案する「地震基盤における地震動」を震源を特定せず策定する地震動として考慮することとした。

- b 震源近傍の観測記録の収集・検討
 - (a) 債務者が観測記録の収集対象として検討した地震は、地震ガイドが例示する次の16地震である。
 - No. 1 2008年岩手・宮城内陸地震 Mw 6. 9
 - No. 2 2000年鳥取県西部地震 Mw6. 6
 - No. 3 2011年長野県北部地震 Mw6. 2
 - No. 4 1997年3月鹿児島県北西部地震 Mw6. 1
 - No. 5 2003年宮城県北部地震 Mw6. 1
 - No. 6 1996年宮城県北部(鬼首)地震 Mw6. 0
 - No. 7 1997年5月鹿児島県北西部地震 Mw6.0
 - No. 8 1998年岩手県内陸北部地震 Mw5. 9
 - No. 9 2011年静岡県東部地震 Mw5. 9

No. 10 1997年山口県北部地震 Mw5. 8

No. 11 2011年茨城県北部地震 Mw5. 8

No. 12 2013年栃木県北部地震 Mw5. 8

No. 13 2004年北海道留萌支庁南部地震 Mw 5. 7

No. 14 2005年福岡県西方沖地震の最大余震 Mw5. 4

No. 15 2012年茨城県北部地震 Mw5. 2

No. 16 2011年和歌山県北部地震 Mw5. 0

(b) 債務者は、地震ガイドがいう「地表地震断層が出現しない可能性がある地震」として上記No.3ないし16を対象に、これらの地震の観測記録を収集したところ、No.13の2004年北海道留萌支庁南部地震(以下「留萌支庁南部地震」という。)では信頼性の高い観測記録が得られたものの、その他の観測記録は、加藤ほか(2004)による応答スペクトルを下回るものであったり、観測記録が観測地点の地盤の影響を受けた信頼性の低いものであったりしたとして、考慮の対象から除外した。

留萌支庁南部地震は、震源近傍の観測点において1127ガルという大きな加速度を観測したものである。当初、観測記録は、地表のものしか得られず、既存の地盤情報も十分ではなかったが、観測地点の地盤についてボーリング調査等が行われ、佐藤ほか(2013)によって信頼性の高い地盤モデルが得られたものである。佐藤ほか(2013)は、S波速度が938m/秒となる深さ41mを基盤層に設定した上で解析評価を行い、基盤地震動の最大加速度は585ガルで地表観測記録の約1/2となる(観測記録の加速度は地盤の影響によって増幅している)ことを明らかにした。また、佐藤ほか(2013)以降の追加調査によって得られた試験データを用いて解析を行ったところ、基盤地震動の最大加速度は561ガルとなり、佐藤

ほか(2013)よりもやや小さめに評価された。本件敷地地盤のS波速度が2600m/秒である(より硬い地盤である)ことを考慮すれば、この観測記録を本件原子炉の地震動評価に用いればさらに小さい評価となるところ、不確かさを保守的に考慮した結果として、留萌支庁南部地震の基盤地震動を620ガルに引き上げた地震動を震源を特定せず策定する地震動として考慮した。

(c) 一方,債務者は,地震ガイドがいう「事前に活断層の存在が指摘 されていなかった地域において発生し、地表付近に一部の痕跡が確 認された地震」として上記No.1の2008年岩手・宮城内陸地 震(以下「岩手・宮城内陸地震」という。)及びNo. 2の200 〇年鳥取県西部地震(以下「鳥取県西部地震」という。)を対象に、 本件原子炉の立地地点と岩手・宮城内陸地震及び鳥取県西部地震の 震源域との地域差等について検討を行った。その結果,岩手・宮城 内陸地震の震源域には新第三紀以降の火山岩、堆積岩が厚く分布し ているのに対し、本件原子炉の立地地点には堅硬かつ緻密な結晶片 岩が少なくとも地下 2 kmまで連続している点で地域差が顕著であり, 鳥取県西部地震の震源域については、地震テクトニクスが異なり、 活断層の成熟度及びこれに寄与する歪み蓄積速度や地下の均質性に おいて地域差が認められること、両地震の震源域と本件原子炉の立 地地点では地震地体構造が異なっていることから、地震の起こり方 も異なるとして、両地震のいずれも検討対象地震として選定する必 要はないと考えた。

さらに、債務者は、鳥取県西部地震については、大局的には本件原子炉の立地地点と同じく西南日本の東西圧縮横ずれの応力場にあることから、地震が発生する地下深部の構造について検討を加え、その結果、深部地下構造に違いがあって、本件原子炉の立地地点と

鳥取県西部地震の震源域とでは地震ガイドにいう「活断層の成熟度」に地域差が認められ、やはり、鳥取県西部地震を震源を特定せず策定する地震動の評価において考慮する必然性はないと考えた。しかし、債務者は、上記の検討にかかわらず、大局的にはいずれも西南日本の東西圧縮横ずれの応力場であることを踏まえ、保守的に、鳥取県西部地震の観測記録を震源を特定せず策定する地震動として考慮することとした。

鳥取県西部地震については、鳥取県にある賀祥ダムの監査廊(以下「賀祥ダム」という。)に設置された地震計による信頼性の高い観測記録が得られている。国立研究開発法人防災科学技術研究所の強震観測網によっても信頼性の高い観測記録が得られているが、賀祥ダムの観測記録がこれを概ね上回ることなどから、震源を特定せず策定する地震動による基準地震動Ssの検討においては賀祥ダムの観測記録で代表させることとした。

(ウ) 基準地震動 S s の策定

a 敷地ごとに震源を特定して策定する地震動

また、敷地ごとに震源を特定して策定する地震動のうち、断層モデルを用いた手法による地震動評価の結果、本件原子炉の施設に与える 影響が大きいケースとして、内陸地殻内地震(中央構造線断層帯によ る地震)における検討ケースのうち,①断層長さ 480 kmで壇ほか (2011)のスケーリング則を用いて応力降下量の不確かさを考慮したケース,②断層長さ 480 kmで Fujii and Matsu'ura (2000)のスケーリング則を用いて応力降下量の不確かさを考慮したケース及び③断層長さ 54 kmで入倉・三宅の手法を用いて応力降下量の不確かさを考慮したケースを選定し,経験的グリーン関数法と理論的手法によるハイブリッド合成を行った。その結果,上記の基準地震動 Ss-1を一部の周期帯において超えた 7ケースを基準地震動 Ss-2-1 ないし Ss-2-7 とした。

また、債務者は、中央構造線断層帯に係る経験的グリーン関数を用いた評価では、東西方向の地震動の周期 $0.2 \sim 0.3$ 秒で基準地震動 Ss-1 を超過する結果が得られているが、仮に、要素地震の南北方向の地震動が東西方向の地震動と同程度のレベルであったとすれば、南北方向でも基準地震動 Ss-1 を超過する可能性も否定できないとして、東西方向の周期 $0.2 \sim 0.3$ 秒で基準地震動 Ss-1 を超過する方中スのうち、基準地震動 Ss-1 を超過する度合いが大きく、かつスケーリング則として基本に考えている壇ほか(2011)に基づいて評価した断層長さ 480 kmで応力降下量の不確かさ(20 MPa)を考慮したケースについて、東西方向と南北方向の地震波を入れ替えたケースを仮想して Ss-2-8 として設定した。

なお、プレート間地震及び海洋プレート内地震ではSs-1を下回ることから、いずれの地震も基準地震動Ss-2としては設定しなかった。

b 震源を特定せず策定する地震動

震源を特定せず策定する地震動のうち、加藤ほか(2004)は基準地震動Ss-1に包絡されることから、Ss-1を一部の周期帯で超える

留萌支庁南部地震の基盤地震動及び鳥取県西部地震の際の賀祥ダムの 観測記録を基準地震動Ss-3として選定することとした。

c 基準地震動 S s の最大加速度

- (a) 敷地ごとに震源を特定して策定する地震動
 - i 応答スペクトルに基づく地震動評価による基準地震動
 - S s 1 H : 650, V : 377
 - ii 断層モデルを用いた手法による地震動評価による基準地震動 (なお、いずれも中央構造線断層帯によるものである。)
 - Ss-2-1 (480km, 壇ほか(2011), 20MPa, 西破壊)
 NS:579, EW:390, UD:210
 - Ss-2-2 (480km, 壇ほか(2011), 20MPa, 中央破壊) NS:456, EW:478, UD:195
 - Ss-2-3 (480km, 壇ほか(2011), 20MPa, 第1 アスペリティ西破壊) NS:371, EW:418, UD: 263
 - Ss-2-4 (480km, Fujii and Matsu' ura (2000), 1.
 5倍, 西破壊) NS: 452, EW: 494, UD: 280
 - Ss-2-5 (480km, Fujii and Matsu'ura (2000), 1.
 5倍,中央破壊) NS:452, EW:388, UD:19

- Ss-2-6 (480km, Fujii and Matsu' ura (2000),
 1.5倍, 東破壊) NS:291, EW:360, UD:
 201
- Ss-2-7 (54km, 入倉・三宅の手法, 1.5倍, 中央破壊)
 NS:458, EW:371, UD:178
- Ss-2-8 (480km, 壇ほか(2011), 20MPa, 中央破壊, 入替)
 NS:478, EW:456, UD:195
- (b) 震源を特定せず策定する地震動
 - Ss-3-1 (留萌支庁南部地震を考慮した地震動) H:
 620, V:320
 - Ss-3-2 (鳥取県西部地震賀祥ダムの観測記録) NS
 :528, EW:531, UD:485

(エ) 基準地震動Ssの年超過確率

a 年超過確率の算定方法

年超過確率の算定は、一般社団法人日本原子力学会(以下「日本原子力学会」という。)が定めた「原子力発電所の地震を起因とした確率論的安全評価実施基準:2007」(以下「原子力学会(2007)」という。)に基づき、「特定震源モデルに基づく評価」及び「領域震源モデルに基づく評価」を実施した。

「特定震源モデルに基づく評価」は、一つの地震に対して、震源の位置、規模及び発生頻度を特定して扱うモデルで、「敷地ごとに震源を特定して策定する地震動」に対応する。債務者は、敷地前面海域の断層群(中央構造線断層帯)による地震、その他の活断層で発生する地震及び南海地震を考慮した。

「領域震源モデルに基づく評価」は、ある拡がりを持った領域の中で発生する地震群として取り扱うモデルで、「震源を特定せず策定す

る地震動」に対応する。債務者は、活断層の存在が知られていないと ころで発生し得る内陸地殻内地震、南海地震以外のフィリピン海プレートで発生する地震(プレート間地震及び海洋プレート内地震)を考慮した。

そして,両モデルにおける年超過確率を足し合わせて,全体としての年超過確率を算定した。

b 年超過確率の算定結果

債務者は、上記 a により年超過確率を算定した結果として、基準地震動 S s -1 の年超過確率は、1 $0^{-4} \sim 1$ 0^{-6} /年(1 万年 ~ 1 0 0 万年に1回)程度であり、基準地震動 S s -2 及び基準地震動 S s -3 の年超過確率も同程度であるとした。

ウ 原子力規制委員会の審査結果

原子力規制委員会による債務者の基準地震動策定の審査の結果は次のと おりである (乙13)。

(ア) 敷地ごとに震源を特定して策定する地震動

原子力規制委員会は、審査の過程において、①敷地前面海域の断層群 (中央構造線断層帯)による地震動評価に当たっては、当該断層群が長 大であるため、部分破壊も考慮するとともに、スケーリング則の適用性 を検討すること、②破壊伝播速度につき、敷地前面海域の断層群(中央 構造線断層帯)が長大な横ずれ断層であることを考慮し、最新の知見を 考慮して検討することを求めた。

この点に関して債務者がした上記地震動評価は,原子力規制委員会による上記求めに応じて補正された結果である。

(イ) 震源を特定せず策定する地震動

原子力規制委員会は、審査の過程において、①震源を特定せず策定する地震動の評価で収集対象となる内陸地殻内の地震の例として地震ガイ

ドに示している全ての地震について観測記録等を収集し、検討することを求め、このうち鳥取県西部地震については、鳥取県西部地震震源域と本件原子炉立地地点との間に地質学的背景に大きな地域差が認められない旨指摘し、②留萌支庁南部地震については、その地震観測記録について、既往の知見である微動探査等に基づく地盤モデルによるはぎとり解析のみならず、適切な地質調査データに基づく地盤モデルによるはぎとり解析等を求めた。

この点について債務者がした上記地震動評価は,原子力規制委員会による上記求め又は指摘を踏まえた結果である。

- (ウ) 原子力規制委員会は、上記(ア)及び(イ)を経た上で、債務者が策定した基準地震動が設置許可基準規則解釈別記2の規定に適合しているとした。
- (11) 本件原子炉施設の耐震設計等(東北地方太平洋沖地震後-地すべり)
 - ア 新規制基準等の内容について

耐震重要施設は、その供用中に当該耐震重要施設に大きな影響を及ぼす おそれがある地震の発生によって生ずるおそれがある斜面の崩壊に対し安 全機能が損なわれるおそれがないものでなければならない(設置許可基準 規則4条3項、4項)。

そして、同規則の定めるところは、設置許可基準規則解釈別記2第8項において、耐震重要施設の周辺斜面について、基準地震動による地震力を作用させた安定解析を行い、崩壊のおそれがないことを確認するとともに、崩壊のおそれがある場合には、当該部分の除去及び敷地内土木工作物による斜面の保持等の措置を講じることにより、耐震重要施設に影響を及ぼすことがないようにすることをいうものである旨具体化されており、上記の安定解析の際の方針として、次の方針によるべき旨を定めている(乙68)。

(ア) 安定性の評価対象としては、重要な安全機能を有する設備が内包され

た建屋及び重要な安全機能を有する屋外設備等に影響を与えるおそれの ある斜面とすること

- (イ) 地質・地盤の構造, 地盤等級区分, 液状化の可能性及び地下水の影響等を考慮して, すべり安全率等により評価すること
- (ウ) 評価に用いる地盤モデル,地盤パラメータ及び地震力の設定等は,基 磁地盤の支持性能の評価に準じて行うこと。特に地下水の影響に留意す ること

また、上記設置許可基準規則及び同規則解釈に基づく安全審査において 周辺斜面等の安定性評価の妥当性を確認する際に用いられる審査ガイド (地盤ガイド)には、上記(イ)のすべり安全率の評価基準値としてこれを 「1.2」とする旨定めている(審尋の全趣旨)。

- イ 債務者は、本件原子炉施設の周辺斜面の安定性について、次のとおり評価した(乙11,270)。
 - (ア) 債務者は、本件原子炉施設の周辺斜面を構成する岩盤について解析用物性値を設定するにあたり、一般的に広く用いられている、いわゆる「電中研方式」の分類法を参考に、地質調査結果に基づき、堅い岩盤から順に、CH級、CM級、CL級及びD級の4段階に岩盤分類を行った。その上で、同一の岩盤分類においても、風化の程度、割れ目の状態等によって強度特性等に幅があることを考慮し、解析用岩盤分類として、I級①~③(CH級)、Ⅱ級(CM級)及びⅢ級(CL級、D級及び表土等。評価対象の地盤に応じてより詳細にⅢ級①及び②を設定)に分類した。そして、それらの解析用岩盤分類に応じて、強度特性のばらつきを考慮した上で解析用物性値を設定した。また、敷地内にみられる断層の解析用物性値については、断層内部に粘土状の軟質部を介さず岩石相当の物性を有していると判断できる断層とそれ以外の断層とに分けて設定した。

- (イ) そして、債務者は、耐震重要施設及び常設重大事故等対処施設と 周辺斜面との離隔距離や崩壊した場合のすべりの向きを考慮して、安定 性評価の対象とする斜面として、本件原子炉施設の原子炉建屋の周辺斜 面、空冷式非常用発電装置の周辺斜面及び海水ピットの周辺斜面をそれ ぞれ抽出した。その上で、各評価対象斜面について、周辺斜面の岩級、 勾配、高さ、敷地内断層の性状等を考慮して、斜面の高さが高い断面、 斜面の勾配が急な断面等、最も厳しい評価となると想定される断面を選 定し、評価対象断面とした。
- (ウ) 次に、債務者は、原子力発電所耐震設計技術指針(JEAG4601 -2008。乙108)を参考に、評価対象断面に対して簡便法を用いた絞り込みを行い、すべり安全率が最も厳しくなる1断面をそれぞれ選定した上で解析モデルを作成した。もっとも、債務者は、上記評価対象斜面のうち、重油タンクの東側斜面については、斜面の高さ(約30m)に対して重油タンクと上記斜面の法尻との離隔距離が約90mであったことから、仮に斜面崩壊を生じても重油タンクに影響を及ぼさないものとして、詳細な解析評価の対象から除外した。

その結果、上記各想定すべり面について得られたすべり安全率の最小値は、いずれも地盤ガイドが定める評価基準値(1.2)を上回った。 また、全体で最もすべり安全率が小さくなるすべり面(すべり安全率は

- 1.3)に対し、更なる地盤物性のばらつき等を考慮した場合でも、すべり安全率は上記評価基準値を上回ることに変わりはなかった。
- (オ) なお、債務者は、最も小さなすべり安全率を示したすべり面を含む斜面である本件原子炉の南側斜面を含む原子炉建屋の周辺斜面については、斜面表面に保護工(ロックアンカー、ロックボルト、鉄筋コンクリート製の擁壁・格子枠)を施している(乙270)。

ウ 原子力規制委員会の審査

原子力規制委員会は、耐震重要施設の周辺斜面について、債務者が基準 地震動による地震力を作用させた適切な動的解析を行い、崩壊のおそれが ないことを確認していることから、設置許可基準規則解釈別記2の規定に 適合していること及び地盤ガイドを踏まえているとした(乙13)。

- (12) 本件原子炉施設の耐震設計等(東北地方太平洋沖地震後-液状化)
 - ア 新規制基準等の内容について

耐震重要施設は、変形した場合においてもその安全機能が損なわれるお それがない地盤に設けなければならない(設置許可基準規則3条2項)。

そして、同規則の定めるところは、設置許可基準規則解釈別記1第2項において、「変形」とは、地震発生に伴う地殻変動によって生じる支持地盤の傾斜及び撓み並びに地震発生に伴う建物・構築物間の不等沈下、液状化及び揺すり込み沈下等の周辺地盤の変状をいうものである旨具体化されている(乙68)。

イ 債務者による評価について

債務者は、本件原子炉の耐震重要施設及び常設重大事故等対処施設は、 全て堅硬な岩盤に支持させていることから、本件原子炉の敷地において、 仮に埋立部が液状化したとしても、耐震重要施設及び常設重大事故等対処 施設が損壊することは考えられないと評価した(乙11)。

ウ原子力規制委員会の審査

原子力規制委員会は、地盤の変形について、債務者の耐震重要施設の 支持地盤の変形に係る設計方針、地殻変動による傾斜に関する評価が適切 であり、変形した場合においてもその安全機能が損なわれるおそれがない 地盤に当該施設を設けるとしていることから、設置許可基準規則解釈別記 1の規定に適合していること及び地盤ガイドを踏まえていることを確認し た(乙13)。

(13) 本件原子炉施設の耐震設計等(東北地方太平洋沖地震後-津波)

ア 新規制基準等の内容について

設計基準対象施設は、その供用中に当該設計基準対象施設に大きな影響を及ぼすおそれがある津波(以下「基準津波」という。)に対して安全機能が損なわれるおそれがないものでなければならない(設置許可基準規則5条)。

そして、設置許可基準規則解釈別記3は、基準津波は、「最新の科学的・技術的知見を踏まえ、波源海域から敷地周辺までの海底地形、地質構造及び地震活動性等の地震学的見地から想定することが適切なものを策定すること。また、津波の発生要因として、地震のほか、地すべり、斜面崩壊その他の地震以外の要因、及びこれらの組合せによるものを複数選定し、不確かさを考慮して数値解析を実施し、策定すること。また、基準津波の時刻歴波形を示す際は、敷地前面海域の海底地形の特徴を踏まえ、時刻歴波形に対して施設からの反射波の影響が微少となるよう、施設から離れた沿岸域における津波を用いること。なお、基準津波の策定に当たっての調査については、目的に応じた調査手法を選定するとともに、調査手法の適用条件及び精度等に配慮することによって、調査結果の信頼性と精度を確保すること」とした上で、基準津波を次の方針により策定することと定めている(乙68)。

(ア) 津波を発生させる要因として、次に示す要因を考慮するものとし、敷

地に大きな影響を与えると予想される要因を複数選定すること。また、 津波発生要因に係る敷地の地学的背景及び津波発生要因の関連性を踏ま え、プレート間地震及びその他の地震、又は地震及び地すべり若しくは 斜面崩壊等の組合せについて考慮すること。

- プレート間地震
- ・ 海洋プレート内地震
- 海域の活断層による地殻内地震
- ・ 陸上及び海底での地すべり及び斜面崩壊
- 火山現象(噴火、山体崩壊又はカルデラ陥没等)
- (イ) プレート形状, すべり欠損分布, 断層形状, 地形・地質及び火山の位置等から考えられる適切な規模の津波波源を考慮すること。この場合, 国内のみならず世界で起きた大規模な津波事例を踏まえ, 津波の発生機構及びテクトニクス的背景の類似性を考慮した上で検討を行うこと。また, 遠地津波に対しても, 国内のみならず世界での事例を踏まえ, 検討を行うこと。
- (ウ) プレート間地震については、地震発生域の深さの下限から海溝軸まで が震源域となる地震を考慮すること。
- (エ) 他の地域において発生した大規模な津波の沖合での水位変化が観測されている場合は、津波の発生機構、テクトニクス的背景の類似性及び観測された海域における地形の影響を考慮した上で、必要に応じ基準津波への影響について検討すること。
- (オ) 基準津波による遡上津波は、敷地周辺における津波堆積物等の地質学的証拠及び歴史記録等から推定される津波高及び浸水域を上回っていること。また、行政機関により敷地又はその周辺の津波が評価されている場合には、波源設定の考え方及び解析条件等の相違点に着目して内容を精査した上で、安全側の評価を実施するとの観点から必要な科学的・技

術的知見を基準津波の策定に反映すること。

- (カ) 耐津波設計上の十分な裕度を含めるため、基準津波の策定の過程に伴う不確かさの考慮に当たっては、基準津波の策定に及ぼす影響が大きいと考えられる波源特性の不確かさの要因(断層の位置、長さ、幅、走向、傾斜角、すべり量、すべり角、すべり分布、破壊開始点及び破壊伝播速度等)及びその大きさの程度並びにそれらに係る考え方及び解釈の違いによる不確かさを十分踏まえた上で、適切な手法を用いること。
- (ギ) 津波の調査においては、必要な調査範囲を地震動評価における調査よりも十分に広く設定した上で、調査地域の地形・地質条件に応じ、既存文献の調査、変動地形学的調査、地質調査及び地球物理学的調査等の特性を活かし、これらを適切に組み合わせた調査を行うこと。また、津波の発生要因に係る調査及び波源モデルの設定に必要な調査、敷地周辺に襲来した可能性のある津波に係る調査、津波の伝播経路に係る調査及び砂移動の評価に必要な調査を行うこと。
- (ク) 基準津波の策定に当たって行う調査及び評価は、最新の科学的・技術的知見を踏まえること。また、既往の資料等について、調査範囲の広さを踏まえた上で、それらの充足度及び精度に対する十分な考慮を行い、参照すること。なお、既往の資料と異なる見解を採用した場合には、その根拠を明示すること。
- 例 基準津波については、対応する超過確率を参照し、策定された津波が どの程度の超過確率に相当するかを把握すること。

また,新規制基準に基づいて行う発電用軽水型原子炉施設の設置許可段階の基準津波策定に係る安全審査において,審査官等が設置許可基準規則及び同規則解釈の趣旨を十分踏まえ,基準津波策定の妥当性を厳格に確認するために活用することを目的として津波ガイドが策定されている(乙156)。

イ 債務者による評価について

債務者は、次のとおりの調査、検討に基づき、基準津波を策定した(乙11,155)。

(ア) 既往津波に関する調査

債務者は、本件敷地に影響を及ぼしたと考えられる既往津波に関し、 文献調査及び津波堆積物に関する調査を行った。

文献調査の結果、債務者は、瀬戸内海地域を震源とする地震による津波記録として1596年慶長豊後地震(以下「慶長豊後地震」という。)の記録があるものの、これによる被害の記録は別府湾沿岸に限られ、本件敷地周辺において被害があったという記録には接しなかった。また、太平洋側で発生する南海トラフ沿いのプレート境界地震に伴う津波については、過去の津波痕跡高さに関する既存の評価から、瀬戸内海沿岸における津波高さは最大で3m程度と考えられた。一方、地震以外に起因する津波については、文献調査によっては、本件敷地周辺に被害をもたらしたという記録は認められなかった。

債務者は、敷地前面海域である伊予灘をはじめ、別府湾、周防灘及び豊後水道の沿岸部を調査対象とし、当該地域における津波堆積物の報告事例を調査した。その結果、豊後水道沿岸では比較的顕著な津波の痕跡が残されているものの、佐田岬西端の調査地点ではこれらの痕跡は残っておらず、太平洋側から本件原子炉施設が立地する伊予灘側に入り込んでくる津波の影響は小さいと考えられた。また、瀬戸内海側においても、正断層型の海底活断層が分布する別府湾では津波の痕跡が見られるものの、横ずれ型の海底活断層が分布する伊予灘での津波の痕跡を報告したものはなかった。

(イ) 津波発生要因の検討(対象津波の選定)と津波評価

債務者は、上記の調査結果等を踏まえ、津波発生要因ごとの検討を行

い,数値シミュレーションによる評価の対象とする津波(対象津波)の 選定を行った。そして,対象津波について,不確かさを考慮した数値シ ミュレーションを実施して津波による水位変動を評価した。

a 地震に起因する津波の検討

本件原子炉施設に影響を与える可能性がある地震に起因する津波として、次のとおり、海域の活断層に想定される地震に伴う津波及びプレート境界付近に想定される地震に伴う津波について検討した。なお、債務者は、海洋プレート内地震に伴う津波については、フィリピン海プレートがユーラシアプレートに潜り込む境界(南海トラフ)よりも本件原子炉施設から見て遠方で発生することが想定されるものの、想定される津波の規模及び本件敷地とプレート境界との位置関係から、プレート境界付近に想定される地震に伴う津波と比較して影響が有意に小さいため、その影響は、プレート境界付近に想定される地震に伴う津波に包含されるものとして、個別の検討は必要ないと判断した。

(a) 海域の活断層による地震に伴う津波の検討

債務者は、本件敷地に最も近い海域の活断層が敷地前面海域の断層群であること、同断層群は、地震に伴って大きな津波が生じる可能性が低いとされる横ずれ断層ではあるが、仮に縦ずれとなるすべり成分を加味して津波を想定した場合には、本件敷地との距離から見て当該断層群に想定される地震による津波が本件原子炉施設に影響を及ぼす可能性が高いと考えられたことから、海域の活断層については当該断層群の地震による津波を対象津波として選定することとした。

そして,敷地前面海域の断層群(長さ54km)は,中央構造線断層帯を構成する活断層であることから,地震動評価と同様,中央構造線断層帯(長さ約360km)及び別府-万年山断層帯が連動する

ケースを想定し、このうち、海域の区間として伊予セグメント(断層長さ約33km)、敷地前面海域の断層群及び別府-万年山断層帯(以下「本件海域部断層群」という。)を対象として波源の基準断層モデルを設定することとした。

地震規模の設定は、伊予セグメント及び敷地前面海域の断層群については、各断層長さの合計87㎞を地震規模想定区間として、土木学会原子力土木委員会津波評価部会「原子力発電所の津波評価技術」(以下「土木学会(2002)」という。)に記載の武村(1998)の手法(以下「武村式(1998)」という。)によることとし、別府一万年山断層帯については、別府湾沿岸に甚大な津波被害を及ぼしたとされる慶長豊後地震に対して大分県がその痕跡高を精緻に再現した「大分県津波浸水予測調査報告書」(以下「大分県(2013)」という。)の断層モデル(以下「大分県モデル」という。)を用いることを基本とし、豊予海峡断層を佐田岬西端まで延伸することで、地震規模が大きくなるように設定することとした。

数値シミュレーションの実施にあたっては、不確かさを考慮し、断層傾斜角、すべり角、すべり量等、計算に必要なデータをそれぞれ複数設定した。具体的には、基準断層モデルとして、本件海域部断層群のうち、「敷地前面海域の断層群+伊予セグメント」については、断層傾斜角鉛直、すべり角180度、すべり量7.59mなどと設定した上で、これに断層傾斜角の不確かさ等を考慮した複数のパラメータスタディモデル(いずれも「敷地前面海域の断層群+伊予セグメント」の全域にわたってすべり量が7~8mで一様であると仮定したモデル。以下、これを「一様すべり量モデル」という。)を設定した。また、一様すべり量モデルに加え、原子力規制委員会から、基準地震動策定における震源モデルと整合的なモデル

を想定するよう求められたことから、壇ほか(2011)の知見に基づいて、「敷地前面海域の断層群+伊予セグメント」につき、平均すべり量を2.67mと仮定した上で、すべり量の不確かさを複数考慮することで断層の不均質な破壊を考慮したモデル(以下「不均質モデル」という。)を設定した。

その結果, 津波による水位上昇は最大で東京湾平均海面(T.P.) +7.56m(=5.94m+1.62m, 評価地点:本件原子炉敷地前面)であり, 水位下降はT.P.-4.08m(=-2.39m-1.69m, 評価地点:本件原子炉海水取水口)であった。

(b) プレート間地震に伴う津波の検討

南海トラフ沿いのプレート境界における地震に伴う津波のモデルについては、過去の地震津波に基づくものがあるほか、過去の津波の波高を包絡するように設定された中央防災会議の「想定東南海・南海津波」、東北地方太平洋沖地震を踏まえて想定された内閣府検討会の「南海トラフの巨大地震に伴う津波」がある。債務者は、上記のうち、地震規模が最も大きく、本件敷地に対して最も影響が大きいと考えられる津波である「南海トラフの巨大地震に伴う津波」を対象津波として選定した。

また、津波ガイドでは、プレート間地震に起因する津波波源を設定する対象領域として3つの領域を例示しており、南海トラフについては、南海トラフから南西諸島海溝まで含めた領域が対象領域として区分されている(乙156)。そして、南海トラフの海域は、テクトニクス的背景が2004年スマトラ島沖地震が発生したスマトラ島〜アンダマン諸島の領域と類似しているとの指摘があること等を踏まえ、「南海トラフから南西諸島海溝までの領域を対象とした津波」についても、対象津波として選定した。

i 南海トラフの巨大地震に伴う津波

内閣府検討会は、東北地方太平洋沖地震を契機として中央防災会議の下に設置された「東北地方太平洋沖地震を教訓とした地震・津波対策に関する専門調査会」により示された「あらゆる可能性を考慮した最大クラスの巨大な地震・津波を検討していくべきである」との考え方に基づき、発生し得る最大クラスの地震・津波を検討し、公表している。

このうち、内閣府検討会は、想定津波波源域については、東側 (駿河湾側) は駿河湾における南海トラフのトラフ軸から、南西側 (日向灘側) は九州・パラオ海嶺の北側付近でフィリピン海プレート境界面の深さ約30kmからそれよりもやや深い深部低周波地震が発生している領域まで(日向灘の領域はプレート境界面の深さ約40kmまで)としている。

また、内閣府検討会は、津波波源モデルの設定にあたっては、南海トラフで発生した過去の地震に加えて、世界の海溝型地震の震源断層モデルの調査結果も踏まえて、地震規模(Mw9.1)を設定するとともに、津波水位への影響が大きい断層のすべり量に関して、「大すべり域(約20m)」、「超大すべり域(約40m)」の設定を行うとともに、波源が広大で、「大すべり域」等の設定位置により地域ごとの影響度合いが異なることから、「大すべり域」等の位置を複数想定し、全11ケースの検討を実施している。

債務者は、内閣府検討会が公表した全11ケースのうち、本件原子炉施設への影響が大きいと考えられる四国沖から九州沖に大すべり域及び超大すべり域が設定されているケースの中から「四国沖~九州沖」に「大すべり域+超大すべり域」を設定したケー

スによる津波を対象津波として選定した(南海トラフの巨大地震 に伴う津波)。

南海トラフの巨大地震に伴う津波の数値シミュレーションの結果,水位上昇は最大でT. P. +2. $45 \,\mathrm{m}$ (=0. $83 \,\mathrm{m}+1$. $62 \,\mathrm{m}$, 評価地点:本件原子炉敷地前面)であり,水位下降は最大でT. P. -2.55 m (=-0. $86 \,\mathrm{m}-1$. $69 \,\mathrm{m}$, 評価地点:本件原子炉海水取水口)であった。

南海トラフから南西諸島海溝までの領域を対象とした津波 債務者は、南海トラフから琉球海溝において、プレート境界面 における固着域に関する分析を実施し、その分析結果に基づき、 すべり量等の不確かさを考慮した津波波源を設定し、数値シミュ レーションを実施することとした。

そして、南海トラフから琉球海溝について、垣見ほか(2003)の 地震地体構造区分等を参考に、南海トラフ、琉球海溝北部、琉球 海溝中部及び琉球海溝南部の4つに区分し、各領域での固着域に 関する分析及び領域境界を越えて固着域が破壊する可能性の検討 を行った。債務者は、上記の分析・検討の結果に加え、現在の知 識・データを超えることがあり得るとの観点から、琉球海溝の海 溝軸付近での固着域が東北地方太平洋沖地震と同様のMw9.0 の大きさで破壊する場合を想定し、琉球海溝北部から琉球海溝中 部までの範囲を断層面積とした津波波源を設定することとした。 また、債務者は、大すべり域の位置を、本件発電所に近い北東部 の領域に設定し、破壊様式につき、瞬時破壊及び破壊伝播を想定 した合計3つのケースを想定した検討を行うこととした。

そして、南海トラフから南西諸島海溝までの領域を対象とした 津波数値シミュレーションの結果、水位上昇は最大でT.P.+2. 02m (= 0. 40m+1. 62m, 評価地点:本件原子炉敷地前面)であり、取水口における水位下降はT.P.-2.05m (= -0.36m-1.69m, 評価地点:本件原子炉海水取水口)となった。

b 海底及び陸上での地すべりに伴う津波の検討

(a) 海底地すべりに伴う津波

債務者は、本件敷地が外洋からの津波の影響が小さい上、海底地形が極めて平坦な瀬戸内海の伊予灘に面しており、本件敷地周辺において海底地すべりによる津波被害があったという記録も見当たらないこと、本件敷地周辺の海底地形判読及び音波探査記録を用いた検討によっても、本件敷地周辺に海底地すべりの痕跡が認められなかったことから、仮に海底地すべりを要因とする津波があったとしても、本件原子炉施設に与える影響は、他の要因による津波に比べ小さいものであると判断した。

(b) 伊予灘沿岸部の地すべりに伴う津波

本件敷地周辺の陸域には、三波川帯の塩基性片岩が広く分布し、 地すべりの痕跡が点在している。地すべりを引き起こす「きっかけ」 としては地震又は降雨が考えられる。

このうち、地震に伴う地すべりについては、日本地すべり学会「地震地すべり」によって総括されており、慶長豊後地震の際に大分県で発生した事例を含め、過去の地震に伴う地すべりの発生箇所が整理されているところ、債務者は、本件敷地周辺において地震に伴う10万㎡を超える地すべりの報告には接しなかった。また、四国における三波川帯の大規模崩壊は、剣山北東から石鎚山南方の四国山地部で多く、中央構造線沿いではむしろ少ないとの知見もあることから、債務者は、本件敷地周辺において地震に伴う地すべりが

発生し、同敷地に影響を与えるような津波を生じる可能性は極めて 低いものと判断した。

一方、三波川変成岩類分布域においては、古い地すべり地が部分 的に降雨地すべりを発生した事例の報告があることなどから、本件 原子炉の敷地周辺で見られる地すべりの痕跡は降雨に伴う地すべり によるものであると考えられた。しかし、債務者は、その多くは地 形の開析状況等から形成時期が非常に古く、地すべり土塊の大部分 は山腹に残って長年にわたって安定していること、一般に四国の大 規模崩壊(深層崩壊)は高度500m以上の地域に分布するとの知 見があるところ、本件敷地は標高300m程度の細長い半島に位置 するから、地すべりの規模もおのずと制限されるものと考えられる こと、同敷地周辺に深層崩壊の報告事例も認められないことなどの 事情から、降雨に伴う地すべりによって本件原子炉の敷地に影響を 与えるような津波を生じる可能性は低いものと判断した。もっとも, 債務者は、津波に対する備えに万全を期し、津波に対する安全余裕 を十分に確保する観点から、沿岸部の自然斜面で降雨に伴う地すべ りが発生して岩屑流(地すべり土塊)が海面に突入することで生じ る津波について影響を検討することとした。

検討の対象とする地すべり地点の選定に当たっては、防災科学技術研究所の地すべり地形分布図に示された地すべり地形及び1万分の1空中写真を用いた独自の地形判読によって敷地付近の伊予灘沿岸部に分布する地すべり地形を抽出し、地表踏査等によって地すべりの認定、さらには地すべり範囲の確認を行い、縮尺5千分の1の地形図に整理した。認定した地すべり地について、その規模と敷地までの距離等を勘案し、立神岩、小島、海岬西、海岬及び亀浦の5地点において発生する地すべりに伴う津波を対象津波として選定し

た。

そして、上記のとおり選定された各地点について数値シミュレーションをした結果、水位上昇は最大でT.P.+6.35m (= 4.73m+1.62m,評価地点:本件原子炉敷地前面)であり、水位下降は最大でT.P.-3.36m (= -1.67m-1.69m,評価地点:本件原子炉海水取水口)であった。

c 火山の山体崩壊に伴う津波の検討

本件敷地前面海域である伊予灘沿岸において将来の活動性を考慮する火山としては、伊予灘西方の別府湾沿いに位置する鶴見岳が存在する。別府湾沿岸では、鹿鳴越などの古い第四紀火山が過去に大規模な山体崩壊を発生させた痕跡が岩屑なだれ堆積物として残っている。また、歴史時代にも、慶長豊後地震に伴って内陸の水口山北斜面で津江岩屑なだれが発生している。この地震の際には沿岸の高崎山で崖崩れが発生したとされ、津波の二次的な要因となった可能性も指摘されている。。

このようなことから、債務者は、本件原子炉施設への影響を考慮すべき津波として、別府湾沿岸の火山の山体崩壊に起因する津波を考慮することとし、中でも活火山であり山体規模も突出して大きい鶴見岳(伽藍岳含む。)の山体崩壊に伴う津波を検討することとした。検討にあたっては、鶴見岳の地形、過去の崩壊規模等を考慮し、山体が大きく別府湾への崩壊物の流入量も大きい鶴見岳東麓の崩壊を想定することとし、①既往最大規模の山体崩壊(崩壊土砂の体積:2000万㎡)及び②仮想的に山頂を含む大規模な山体崩壊(同5億4000万㎡)に起因する津波を対象津波として選定した。

上記のとおり選定された各対象津波につき数値シミュレーションを した結果、最も厳しいケースとなったのは水位上昇側及び水位下降側 のいずれも仮想的なケースである上記②であり、水位上昇は最大でT. P. + 2. 5 6 m (= 0. 9 4 m + 1. 6 2 m, 評価地点:本件原子 炉敷地前面)であり、水位下降は最大でT. P. - 2. 4 0 m (= - 0. 7 1 m - 1. 6 9 m, 評価地点:本件原子炉海水取水口)であった。

なお、津波の要因となる火山現象としては、山体崩壊以外にも、海 底火山の噴火、火砕流等が考えられるが、債務者は、本件原子炉施設 において活動を考慮すべき火山には海底火山は存在せず、また、これ らの火山の火砕流堆積物の分布も内陸部に限定されることから、これ らを要因とする津波の発生は想定されないものと判断した。

(ウ) 重畳の検討

債務者は、上記の各津波発生要因(海域の活断層に想定される地震に伴う津波、プレート境界付近に想定される地震に伴う津波、地すべりに伴う津波及び火山の山体崩壊に伴う津波)のそれぞれ二つずつの津波発生要件ごとに、重畳する必要性を具体的に検討した。その結果、債務者は、これら各津波発生要因相互の関連性は低いことから、基本的にはこれらの組合せを考慮する必要はないと考えた。

もっとも、債務者は、本件海域部断層群の地震によって上記で評価対象とした各地すべり地点において小規模な地すべり又は斜面崩壊が発生する可能性は否定できないことなどから、さらなる安全性向上を図るべく、敷地前面海域の断層群による地震に伴う津波と地すべりに伴う津波(地震に伴う小規模な地すべり又は斜面崩壊はこれに包含される。)を重畳させた津波(以下「重畳津波」という。)につき、数値シミュレーションによる評価を行うこととした。

数値シミュレーションの実施にあたっては、地震発生後、地すべりが 発生するタイミングを調整するなどの不確かさを考慮し、十分に安全側 の結果が得られるよう複数の検討ケースで評価を行った。数値シミュレ ーションの結果,水位上昇は最大でT.P.+8.12m (= 6.50m + 1.62m,評価地点:本件原子炉施設敷地前面)であり、水位下降は最大でT.P.-4.60m (= - 2.91m - 1.69m,評価地点:本件原子炉海水取水口)であった。

(エ) 基準津波の策定

債務者は、上記各津波発生要因及び重畳津波についてした数値シミュレーションによる評価を踏まえ、本件原子炉施設に最も大きな影響を与える津波を基準津波として策定することとした。

そして、施設からの反射波の影響が微小となるよう、敷地から沖合へ約2.5km離れた水深約47mの地点を定義地点として選定し、5波の基準津波を策定した。

(才) 超過確率

債務者は、日本原子力学会「日本原子力学会標準 原子力発電所に対する津波を起因とした確率論的リスク評価に関する実施基準:2011」(以下「原子力学会(2012)」という。)及び土木学会原子力土木委員会津波評価部会「確率論的津波ハザード解析の方法」(以下「土木学会(2011)」という。)を参考に、確率論的津波ハザード評価を行い、基準津波による水位の超過確率を参照した。その結果、基準津波定義地点における基準津波の最高水位及び最低水位の年超過確率は、それぞれ10 $^{-7}\sim10^{-8}$ 程度及び $10^{-5}\sim10^{-6}$ 程度であった。なお、債務者は、地すべり津波については、発生頻度を設定することが困難であるとして、評価に含めないこととした。

ウ 原子力規制委員会の審査結果

原子力規制委員会による債務者の基準津波の審査の結果は次のとおりである(乙13)。

(ア) 地震に伴う津波

原子力規制委員会は、審査の過程において、敷地前面海域の断層群について連動を考慮した波源を基本ケースとして評価すること、すべり量に関係する剛性率の妥当性を検討すること、津波シミュレーション計算で設定する渦動粘性係数の影響を検討することを求めた。

そこで、債務者は、伊予セグメント、敷地前面海域の断層群及び別府 -万年山断層帯(すなわち、本件海域部断層群)が連動するケースを基 本ケースとするとともに、剛性率、渦動粘性係数の値を見直して津波の 評価を示した。上記のとおり見直した後の評価が上記イ(イ) a である。

原子力規制委員会は、債務者が実施した地震に伴う津波の評価(ただし、上記イ(イ) a のとおり見直した後のもの)につき、波源モデルの設定等に必要な調査を実施するとともに、行政機関が行った津波シミュレーションも適切に反映し、不確かさを考慮して波源の特性や位置等から考えられる適切な規模の津波波源を設定して適切な手法で評価を行っており、設置許可基準規則解釈別記3の規定に適合しているとした。

(イ) 地震以外の要因による津波

原子力規制委員会は、債務者が実施した地震以外の要因による津波の 評価については、波源モデルの設定等に必要な調査を実施するとともに、 不確かさを考慮して波源の特性や位置等から考えられる適切な規模の津 波波源を設定して適切な手法で評価を行っており、設置許可基準規則解 釈別記3の規定に適合しているとした。

(ウ) 地震に伴う津波と地震以外の要因による津波の重畳

原子力規制委員会は、債務者が実施した地震に伴う津波と地震以外の 要因による津波の重畳の評価については、敷地の地学的背景及び津波発 生要因の関連性を踏まえて波源を適切に組み合わせ、適切な手法で評価 を行っており、設置許可基準規則解釈別記3の規定に適合しているとし た。

(エ) 基準津波の策定等

原子力規制委員会は、債務者が、適切な位置で基準津波の時刻歴波形 を策定するとともに、基準津波による水位変動に伴う砂移動の評価を適 切に行っており、設置許可基準規則解釈別記3の規定に適合していると した。

(4) 本件原子炉施設の耐震設計等(東北地方太平洋沖地震後-火山現象)

ア 新規制基準等の内容について

安全施設は、想定される自然現象(地震及び津波を除く。)が発生した場合においても安全機能を損なわないものでなければならないとされているところ(設置許可基準規則6条1項)、設置許可基準規則解釈によれば、ここに「想定される自然現象」とは、敷地の自然環境を基に、洪水、風(台風)、竜巻、凍結、降水、積雪、落雷、地滑り、火山の影響、生物学的事象又は森林火災等から適用されるものをいうものとされている(乙68)。

火山ガイドは、新規制基準を受け、上記各自然現象のうち「火山の影響」について、原子力発電所への火山影響を適切に評価するため、原子力発電所に影響を及ぼし得る火山の抽出、抽出された火山の火山活動に関する個別評価、原子力発電所に影響を及ぼし得る火山事象の抽出及びその影響評価のための方法と確認事項をとりまとめ、もって、新規制基準が求める火山の影響により原子炉施設の安全性を損なうことのない設計であることの評価方法の一例として定められた(乙147)。

火山ガイドは、火山影響評価を立地評価と影響評価の2段階で行うこと としている(乙147)。

(ア) 立地評価では、まず原子力発電所に影響を及ぼし得る火山の抽出を行い、影響を及ぼし得る火山が抽出された場合には、抽出された火山の火山活動に関する個別評価、すなわち、設計対応不可能な火山事象(火砕

物密度流,溶岩流,岩屑なだれ・地滑り及び斜面崩壊,新しい火山の開口並びに地殻変動の5事象)が原子力発電所の運用期間中に影響を及ぼす可能性の評価を行う。

影響を及ぼす可能性が十分小さいと評価された場合は、火山活動のモニタリングと火山活動の兆候把握時の対応を適切に行うことを条件として、個々の火山事象に対する影響評価を行う。一方、設計対応不可能な火山事象が原子力発電所運用期間中に影響を及ぼす可能性が十分小さいと評価されない場合は、原子力発電所の立地は不適と考えられる。

- (イ) 影響評価では、個々の火山事象への設計対応及び運転対応の妥当性に ついて評価を行う。
- イ 立地評価に関する火山ガイドの定め(乙147)
 - (ア) 火山影響評価が実施される原子力発電所周辺の領域(原子力発電所から半径160kmの範囲の領域。以下「地理的領域」という。)に対して、文献調査等で第四紀(約258万年前以降)に活動した火山(以下「第四紀火山」という。)を抽出する。
 - (イ) 地理的領域にある第四紀火山から,文献調査並びに地形・地質調査及び火山学的調査により,将来の活動の活動可能性のある火山を抽出する。すなわち,上記各調査の結果,完新世(約1万1700年前以降)に活動を行った火山は,将来活動の可能性のある火山とし,後記(ウ)の個別評価の対象とする。一方,上記各調査の結果,完新世に活動を行っておらず,過去の活動を示す階段ダイヤグラムにおいて,火山活動が終息する傾向が顕著であり,最後の活動終了からの期間が過去の最大休止期間より長いなど,将来の活動可能性がないと判断できるものは後記(ウ)の個別評価の対象外とするが,それ以外の火山は,将来の火山活動性が否定できない火山として,後記(ウ)の個別評価の対象とする。
 - (ウ) 将来の活動可能性があると評価した火山については、原子力発電所の

運用期間中において設計対応が不可能な火山事象を伴う火山活動の可能性の個別評価を行う。この際、検討対象火山の活動を科学的に把握する観点から、過去の火山活動履歴とともに、必要に応じて、地球物理学的調査(マグマ溜まりの規模や位置、マグマの供給系に関連する地下構造等についての分析)及び地球化学的調査(火山噴出物等についての分析)を行い、現在の火山の活動の状況も併せて評価する。

上記個別評価の結果,検討対象火山の活動の可能性が十分小さい場合には,過去の最大規模の噴火により設計対応不可能な火山事象が原子力発電所に到達したと考えられる火山を抽出し,火山活動のモニタリングを実施し,運用期間中において火山活動を継続的に評価する。

- (エ) 上記個別評価の結果,検討対象火山の活動の可能性が十分小さいと判断できない場合は,調査結果から噴火規模を推定し(推定できない場合は過去最大の噴火規模とする。),設定した噴火規模における設計対応不可能な火山事象が原子力発電所に到達する可能性が十分小さいかどうかを評価する(類似の火山における影響範囲又は検討対象火山の痕跡等によって判断できない場合は設計対応不可能な火山事象の国内既往最大到達距離を影響範囲とする。)。そして,設計対応不可能な火山事象が原子力発電所に到達する可能性が十分小さいと評価できない場合は,原子力発電所の立地は不適であると考えられる。
 - 一方,設計対応不可能な火山事象が原子力発電所に到達する可能性が 十分小さいと評価できる場合には,過去の最大規模の噴火により設計対 応不可能な火山事象が原子力発電所に到達したと考えられる火山につい てはモニタリング対象とし,事業者において火山活動のモニタリングを 実施し,運用期間中に火山活動の継続的な評価を行う。
- (オ) 火山活動のモニタリングは、過去の最大規模の噴火により設計対応不可能な火山事象が原子力発電所に到達したと考えられる火山を監視対象

火山とし、噴火可能性が十分小さいことを継続的に確認することをも目的として運用期間中のモニタリングを行う。監視項目としては、地震活動の観測(火山性地震の観測)、地殻変動の観測(GPS等を利用し地殻変動を観測)、火山ガスの観測(放出される二酸化硫黄や二酸化炭素量などの観測)が挙げられる。

そして,モニタリング結果を定期的に評価し,当該火山の活動状況を 把握し,状況に変化がないことを確認する。事業者が実施すべきモニタ リングは,原子炉の運転停止,核燃料の搬出等を行うための監視であり, 火山専門家のみならず,原子力やその関連技術者により構成され,透明 ・公平性のあるモニタリング結果の評価を行う仕組みを構築する。

また、モニタリングにより火山活動の兆候を把握した場合の対処方針等を定めるものとする。具体的には、「対処を講じるために把握すべき火山活動の兆候と、その兆候を把握した場合に対処を講じるための判断条件」、「火山活動のモニタリングにより把握された兆候に基づき、火山活動の監視を実施する公的機関の火山の活動情報を参考にして対処を実施する方針」、「火山活動の兆候を把握した場合の対処として、原子炉の停止、適切な核燃料の搬出等が実施される方針」を定めるものとする。

ウ 影響評価をめぐる火山ガイドの定め(乙147)

火山ガイドが定める影響評価の総論は概ね後記(ア)のとおりであり、影響評価の対象となる火山事象のうち、降下火砕物による原子力発電所への影響評価の方法に関する火山ガイドの定めの内容は、概ね後記(イ)のとおりである。

(ア) 原子力発電所の運用期間中において設計対応不可能な火山事象によって原子力発電所の安全性に影響を及ぼす可能性が十分小さいと評価される火山について、それが噴火した場合、原子力発電所に影響を与える可

能性のある火山事象を抽出し、その影響評価を行う。影響評価では、個々の火山事象への設計対応及び運転対応の妥当性について評価を行う。

ただし、降下火砕物に関しては、火山抽出の結果にかかわらず、原子力発電所の敷地及びその周辺調査から求められる単位面積あたりの質量と同等の火砕物が降下するものとする。なお、敷地及び敷地周辺で確認された降下火砕物で、噴出源が同定でき、その噴出源が将来噴火する可能性が否定できる場合は考慮対象から除外する。また、降下火砕物は浸食等で厚さが低く見積もられるケースがあるので、文献等も参考にして、第四紀火山の噴火による降下火砕物の堆積量を評価すること。

(イ) 降下火砕物は、最も広範囲に及ぶ火山事象で、ごくわずかな火山灰の堆積でも、原子力発電所の通常運転を妨げる可能性があり、降下火砕物により、原子力発電所の構造物への静的負荷、粒子の衝突、水循環系の閉塞及びその内部における磨耗、換気系、電気系及び計装制御系に対する機械的及び化学的影響、並びに原子力発電所周辺の大気汚染等の影響が挙げられることから、降雨・降雪などの自然現象は、火山灰等堆積物の静的負荷を著しく増大させる可能性がある。火山灰粒子には、化学的腐食や給水の汚染を引き起こす成分(塩素イオン、フッ素イオン、硫化物イオン等)が含まれていることも踏まえ、降下火砕物の直接的影響を検討する。

また,降下火砕物は広範囲に及ぶことから,原子力発電所周辺の社会 インフラに影響を及ぼすものであり,この中には,広範囲な送電網の損 傷による長期の外部電源喪失や原子力発電所へのアクセス制限事象が発 生し得ることも考慮する必要があることから,これらを間接的影響とし て評価する。

(ウ) 降下火砕物の影響評価では、降下火砕物の堆積物量、堆積速度、堆積 期間及び火山灰等の特性などの設定、並びに降雨等の同時期に想定され る気象条件が火山灰等特性に及ぼす影響を考慮し、それらの原子炉施設 又はその付属設備への影響を評価し、必要な場合には対策がとられ、求 められている安全機能が担保されることを評価する。なお、原子力発電 所内及びその周辺敷地において降下火砕物の堆積が観測されない場合は、 次の方法により堆積物量を設定する。また、堆積速度、堆積期間につい ては、類似火山の事象やシミュレーション等に基づいて、原子力発電所 への間接的な影響も含めて評価する。

- a 類似する火山の降下火砕物堆積物の情報を基に求める。
- b 対象となる火山の噴火量,噴煙柱高,全体粒度分布,及びその領域における風速分布の変動を高度及び関連パラメータの関数として,原子力発電所における降下火砕物の数値シミュレーションを行うことにより求める。数値シミュレーションに際しては,過去の噴火履歴等の関連パラメータ及び類似の火山降下火砕物堆積物等の情報を参考とすることができる。
- (エ) 直接的影響(上記(イ)前段) については、次の事項を確認するものとする。
 - a 降下火砕物堆積荷重に対して、安全機能を有する構築物、系統及び 機器の健全性が維持されること。
 - b 降下火砕物により、取水設備、原子炉補機冷却海水系統、格納容器 ベント設備等の安全上重要な設備が閉塞等によりその機能を喪失しな いこと。
 - c 外気取入口からの火山灰の侵入により,換気空調系統のフィルタの 目詰まり,非常用ディーゼル発電機の損傷等による系統・機器の機能 喪失がなく,加えて中央制御室における居住環境を維持すること。
 - d 必要に応じて、原子力発電所内の構築物、系統及び機器における降 下火砕物の除去等の対応が取れること。

- (オ) 間接的影響(上記(イ)後段)については、原子力発電所外での影響(長期間の外部電源の喪失及び交通の途絶)を考慮し、燃料油等の備蓄又は外部からの支援等により、原子炉及び使用済燃料プールの安全性を損なわないように対応が取れることを確認する。
- エ 債務者は、次のとおり、本件発電所の立地評価をした(乙11,14 6)。
 - (ア) 本件発電所に影響を及ぼし得る火山の抽出

本件発電所は、四国北西部に細長く延びる佐田岬半島の付け根付近の瀬戸内海側に位置する。山口県の内陸部から大分県の国東半島、別府湾沿岸へと火山フロントが連なるが、本件敷地は、火山フロントから南東に大きく離れており、本件敷地を中心とする半径50km内に第四紀火山や第四紀火山岩類は分布しない。本件敷地の地理的領域内には42の第四紀火山が分布し、これらのうち完新世に活動を行った火山は、本件敷地との距離が近いものから順に、鶴見岳 (本件敷地との距離85km)、由布岳(同89km)、九重山(同108km)、阿蘇(同130km)、阿武火山群(同130km)である。これらの5火山は本件発電所に影響を及ぼし得る火山であることから、本件発電所の運用期間中の活動可能性を考慮することとした。

また、完新世に活動を行っていない火山については、文献調査結果を基に、当該火山の第四紀の噴火時期、噴火規模及び活動の休止期間を示す階段ダイヤグラムを作成し、将来の活動可能性の有無を評価した。完新世に活動を行っていない火山のうち、姫島(本件敷地との距離65km)及び高平火山群(同89km)は活火山ではないものの、火山活動が終息する傾向が明確ではなく、将来の火山活動の可能性が否定できないため、本件発電所に影響を及ぼし得る火山として抽出した。残りの35火山は、いずれも活動年代が古く、最新活動からの経過期間が過去の最大休止期

間より長いことなどから、将来の活動可能性はないものと評価し、個別 評価の対象外とした。

(イ) 抽出された火山の火山活動に関する個別評価

a 鶴見岳

鶴見岳は大分県の別府湾西岸に位置する標高1375mの成層火山であり、約9万年前以前から活動を開始し、現在も噴気活動が認められる。南北5kmにわたり連なる溶岩ドームの最南端に位置する鶴見岳は厚い溶岩流の累積からなり、北端の伽藍岳には強い噴気活動がある。完新世で最大規模の噴火は1万0600~7300年前の鶴見岳山頂溶岩噴火(溶岩主体の噴火と推定される。)で噴出量は0.15km²とされている。鶴見岳を起源とする大規模火砕流は知られておらず、本件発電所に影響を及ぼす可能性はない。

b 由布岳

由布岳は大分県の鶴見岳西方に位置する標高1583mの成層火山であり、約9万年前より古い時代から活動を開始し、最新噴火は2000~1900年前とされている。由布岳は数個の溶岩ドーム及び山頂溶岩からなり、約2000年前に規模の大きな噴火活動(以下「2ka噴火」という。)が発生したが、その後有史から現在に至るまで噴火活動は起きていない。完新世以前の噴火規模についての報告はなく、完新世で最大規模の噴火は2ka噴火で噴出量は0.207km²とされている。由布岳の山麓には2ka噴火に伴う火砕流堆積物が分布するが、由布岳を起源とする大規模火砕流は知られておらず、本件発電所に影響を及ぼす可能性はない。また、2ka噴火に伴う火山灰(以下「由布岳1火山灰」という。)は、厚さ数cmで別府湾に降下・堆積しており、その体積は0.05km²とされている。

c 九重山

九重山は由布岳と阿蘇山の間の大分県西部に東西15㎞にわたって分布する20以上の火山の集合であり、最高峰は中岳(標高1791 m)である。約20万年前以降に活動し、最新噴火は1996年である。火山の多くは急峻な溶岩ドームで山体の周囲を主に火砕流から成る緩傾斜の裾野が取り巻く。九重山を起源とする最大規模の火砕流は、約8~7万年前に噴出したと推定される飯田火砕流であり、その堆積物は、大分県から熊本県にかけての地域に分布し、最大層厚約200 m,推定分布面積約150㎢,推定体積は約5㎢と見積もられている。これらの火砕流堆積物の分布は九州内陸部に限られ、本件発電所に影響を及ぼす可能性はない。また、九重山は、完新世にも頻繁にマグマを噴出しており、マグマを出した最後の活動として約1700年前に溶岩ドームが形成されているが、本件敷地から遠く離れており、本件発電所に影響を及ぼす可能性はない。

d 阿蘇

阿蘇カルデラは熊本県東部で東西約17km,南北約25kmのカルデラである。阿蘇カルデラ周辺の火山としては、カルデラの中央部に阿蘇山が、東側に根子岳が位置し、縁辺部に先阿蘇の火山岩類が分布する(阿蘇山、根子岳及び先阿蘇をまとめて以下「阿蘇」ということがある。)。阿蘇山は、高岳(標高1592m)、中岳(標高1506m)等の東西方向に連なる成層火山からなる火山群であり、根子岳(標高1433m)は、開析の進んだ成層火山である。

阿蘇カルデラでは、約27万~約25万年前、約14万年前、約1 2万年前及び約9万年前~約8.5万年前にそれぞれ火砕流及び降下 火砕物を噴出した噴火が認められる(古いものから順に、以下「阿蘇 1噴火」、「阿蘇2噴火」、「阿蘇3噴火」及び「阿蘇4噴火」とい う。)。現在の阿蘇カルデラは、阿蘇1噴火から阿蘇4噴火までの4 回の大噴火によって形成されたものとされている。阿蘇1ないし4噴火のうち、阿蘇4噴火の噴火規模が突出して大きく、その際の噴出物の体積は600km²とされている。

阿蘇1噴火及び阿蘇2噴火による火砕流堆積物は、大分県西部並びに熊本県北部及び中部の広い範囲に、阿蘇3噴火による火砕流堆積物は、大分県西部及び中部並びに熊本県北部及び中部の広い範囲に、阿蘇4噴火による火砕流堆積物は、九州北部及び中部並びに山口県南部の広い範囲に分布する。

ところで、日本第四紀学会編「日本第四紀地図」(1987)及び町田・ 新井(2011)は、阿蘇4噴火による火砕流堆積物の到達範囲を推定し、 本件敷地の位置する佐田岬半島まで到達した可能性を示唆しているが、 その分布(実際に堆積物が確認される範囲)は方向によって偏りがあ り、佐田岬半島において阿蘇4噴火による火砕流堆積物を確認したと の報告はない。また、地表踏査結果によると、佐田岬半島に点在する M面(中位段丘面)の段丘堆積物を覆う風成層は阿蘇4噴火によるテ フラが混在するものの阿蘇4噴火による火砕流堆積物は確認されず, 中位段丘に阿蘇4噴火による火砕流堆積物が保存されている山口県と は状況を異にする。さらに、佐田岬半島西端部の阿弥陀池、佐田岬半 島中央部の伊方町高茂、佐田岬半島付け根部の八幡浜市川之石港は、 堆積条件のよい低地あるいは盆地であって、阿蘇4噴火による火砕流 **堆積物が保存されやすいと考えられるのに、上記各地でのボーリング** 調査によっても,阿蘇4噴火による火砕流堆積物は確認されない。本 件発電所と阿蘇カルデラの距離(約130km), その間の地形的障害 (佐賀関半島,佐田岬半島)により,阿蘇4噴火による火砕流は本件 敷地まで到達していないものと考えられる。なお,債務者が,本件審 査の過程で、阿蘇カルデラから東方(本件敷地方向)への火砕流のシ

ミュレーション評価を実施し、本件敷地への影響を検討したところ、阿蘇4噴火による火砕流堆積物の想定体積200km を上回る320km を本件発電所に近いカルデラ東縁のみに配置したシミュレーションの結果においても、火砕流堆積物が四国までは到達しないとの結果が得られている。

また、各種文献による現在のマグマ溜まりや噴火活動の状況は巨大噴火直前の状態ではないことなどから、阿蘇において本件発電所の運用期間中に阿蘇4噴火のような巨大噴火が発生することはないと考えられる。したがって、阿蘇の巨大噴火が本件発電所の運用期間中に本件発電所に影響を及ぼすことはない。

巨大噴火の最短の活動間隔(阿蘇2噴火と阿蘇3噴火の間の約2万年)は、最新の巨大噴火である阿蘇4噴火からの経過時間(約9万年前~約8.5万年前)よりも短い。

阿蘇4噴火以降の活動としては、約9万年前以降に阿蘇山が噴火活動を開始し、溶岩や火砕物を噴出する小規模噴火の繰り返しにより形成された火山体とともに、降下軽石を主体とする噴火が複数回認められ、現在の阿蘇山の活動は、多様な噴火様式の小規模噴火を繰り返していることから、後カルデラ火山噴火ステージと判断される。

また、阿蘇カルデラの地下構造に関する知見から考えられる現在のマグマ溜まりは、巨大噴火直前の状態のものとは認められない。

以上のことから、本件発電所運用期間中の噴火規模としては、後カルデラ火山噴火ステージである阿蘇山での既往最大噴火規模を考慮するが、阿蘇山での既往最大噴火は阿蘇草千里が浜噴火であり、その噴出物量は約2kmであって、阿蘇山起源の火砕流堆積物の分布は阿蘇カルデラ内に限られ、本件発電所に影響を及ぼす可能性はない。

なお、先阿蘇は約80万年前~約40万年前の間に、根子岳は約1

4万~約12万年前の間に活動が認められるが、活動年代が古いこと 等から、いずれの火山も本件発電所に影響を及ぼすことはない。

e 阿武火山群

阿武火山群は山口県の日本海側に位置する約40の小火山体から構成される火山群である。約80万年前~約1万年前まで活動し、最新噴火は8800年前であり、190万年前~150万年前には先阿武火山活動があったとされる。

阿武火山群における約80万年前以降の火山活動の噴出量は約2. 9 km, 噴火規模(溶岩の体積)は0.001~0.75 km とされているところ,阿武火山群は小規模な溶岩噴出を主体とし,阿武火山群を起源とする大規模火砕流や広域火山灰は知られていないし,本件敷地から遠く離れていることもあって,本件発電所に影響を及ぼす可能性はない。

f 姫島

姫島は、大分県北東部国東半島の北方約4km沖の周防灘に位置する東西約7km、南北約3kmの細長い島であり、標高267mの矢筈岳を最高峰とする火山群である。姫島を起源とする大規模火砕流は知られておらず、本件発電所に影響を及ぼすことはない。

また、姫島の活動時期は約30万年前~10万年前とされている。 全活動期間の約20万年間に7回以上の活動があり、平均活動間隔は 数万年程度であるのに対して、最新活動から約10万年が経過してい ることなどを踏まえれば、本件発電所の運用期間中に噴火する可能性 はない。

g 高平火山群

高平火山群は鶴見岳と同じ位置にある古い火山群であり、新しい鶴 見岳によって覆われている。少なくとも約9万年前以降は鶴見岳が活 動している。したがって、その活動は鶴見岳に包含されているものと 評価する。

(ウ) 立地評価

「火砕物密度流」については、個々の火山における過去の火砕流堆積物の分布が九州又は山口県の内陸部に限定されていることから、本件発電所に影響を及ぼす可能性はない。「溶岩流」及び「岩屑なだれ・地滑り及び斜面崩壊」については、いずれの火山も本件敷地から50km以遠に位置すること、「新しい火口の開口」及び「地殻変動」については、本件敷地は山口県から別府湾に至る火山フロントから十分な離隔があることから、いずれも問題となるものではない。

したがって、本件発電所に影響を及ぼし得る火山による設計対応不可能な火山事象は、本件敷地への到達はないから、その立地に問題はない。 オ 債務者は、鶴見岳、由布岳、九重山、阿蘇及び阿武火山群の5つの火山について、これらの火山が噴火した場合、原子力発電所に影響を与える可能性のある火山事象ごとに影響評価をした。

そして,「火山性土石流,火山泥流及び洪水」,「火山から発生する飛来物(噴石)」,「火山ガス」,「津波及び静振」,「大気現象」,「火山性地震とこれに関連する事象」及び「熱水系及び地下水の異常」につき,いずれも原子力発電所への影響はないと評価した。

また、債務者がした「降下火砕物」の影響評価の内容は、概ね次のとおりである。

(以上につき, 乙11, 13)

(ア) 降下火砕物の最大層厚について

降下火砕物については、上記エ(ア)で抽出した5火山の発電所運用期間 中の活動可能性を考慮し、発電所の安全性に影響を与える可能性につい て検討することとしたが、その際、地理的領域外の火山も含めて検討す ることとした。

本件敷地付近では、阿蘇カルデラを起源とする降下火砕物のほか、地理的領域外にある加久藤カルデラ、姶良カルデラ、阿多カルデラ及び鬼界カルデラを各起源とする降下火砕物も降下したとされている。もっとも、本件敷地南東にある宇和盆地中心部におけるボーリング調査の結果、厚さ5cmを超える降下火山灰は、いずれも九州のカルデラ火山(阿蘇、加久藤、姶良、阿多、鬼界)を起源とする広域火山灰であるところ、地下構造に関する文献調査によると、現在の九州のカルデラ火山のマグマだまりは巨大噴火直前の状態にはないため、これらを起源とする降下火砕物が本件敷地に影響を及ぼす可能性は十分に小さい。

一方,地理的領域内にある火山による降下火山灰の等層厚線図としては,九重山を給源とする九重第一軽石(約5万年前)と阿蘇山を給源とする草千里ヶ浜軽石が示されているところ,前者については火山灰の堆積物が四国南西端の高知県宿毛市で確認されているのに対し,後者については四国における堆積の報告は見られない。

そして、①九重第一軽石の四国における堆積をめぐる文献調査によると、高知県宿毛市で確認された九重第一軽石そのものの層厚を10cmとし、その噴出量を2.03km と見積もられることが示されていること、②上記ボーリング調査の結果、宇和盆地中心部には九重第一軽石と対応する火山灰層が認められないこと、③九重第一軽石は東南東方向に細長い分布を示す旨の報告があることなどから、本件敷地における九重第一軽石の火山灰の降下厚さはほぼ0cmと評価される。

また、九重第一軽石と同等の噴火(噴出量を上記のとおり2.03 km とする。)が起こったときに、現在の気象条件を考慮して本件敷地にどのような降灰が想定されるかを降下火山灰シミュレーションにおいても検討したところ、偏西風がほぼ真西で安定する季節は本件敷地における

降下厚さはほぼ0cmと評価され、風向きによっては本件敷地において降下火山灰が想定されるものの、その厚さは数cmにとどまる。

もっとも、債務者は、審査の過程において、原子力規制委員会から、シミュレーションによる降下火砕物の厚さと既往文献による火山灰等層厚線図との整合性を検討して評価することを求められたことから、噴出量の想定を6.2km²として改めてシミュレーションを行った。その結果、偏西風がほぼ真西で安定する季節は降下厚さは0cm~数cmと評価されるものの、風向きによっては降下厚さが最大14cmとなった。

以上のことから、債務者は、影響評価の前提となる降下火砕物の層厚を15cmと想定することとした。

債務者は、火山ガイドを踏まえた評価とは別に、平成20年頃より四 国北西部における降下火山灰の厚さに関する研究を独自に進めており、 その一環である降下火山灰厚さの確率論的評価に係る研究結果を踏まえ ても、本件発電所で想定する降下火砕物の厚さは妥当であることを確認 した。すなわち、債務者は、平成20年に本件敷地から南東方向約15 kmに位置する愛媛県宇和盆地において実施したボーリング調査により, 長さ120mのコアを取得して、過去約70~80万年間に堆積した地 層中に、九州地方の火山を起源とする主要な広域火山灰を含む60枚以 上の火山灰層を確認した。また、このボーリングコアには、四国西部に 降下したとされるKkt火山灰(約33万年前の加久藤カルデラの噴火 による火山灰)以降の主要な広域火山灰層12枚が全て含まれており、 K k t 火山灰以降に 4 0 枚の火山灰層が含まれることから、独自の研究 によって把握したこれまで知られていない多数の火山灰層を含めても四 国北西部への火山灰の降下頻度が1.2枚/万年と低頻度であることを 確認した上で、VEI6クラスやVEI7クラスの噴火による降下火山 灰を含めた解析を行い、ある層厚以上の火山灰が今後1年間に降下する

確率(年超過確率)を算出した結果,宇和盆地において,年超過確率 10^{-4} に相当する火山灰層厚は 2 cm以上であり,本件発電所において考慮する降下火砕物の厚さ 15 cmの年超過確率は $10^{-4} \sim 10^{-5}$ であるが,これは,原子力規制委員会によって設計基準事故の定義が 10^{-3} /年 $\sim 10^{-4}$ /年程度の発生頻度の状態との考えが示されていることを踏まえれば,設計上考慮すべき火山事象として妥当な水準であることを確認した。

(イ) 降下火砕物の大気中濃度について

債務者は、アイスランド南部のエイヤヒャトラ氷河で平成22年4月に発生した火山噴火地点から約40㎞離れたヘイマランド地区における大気中の降下火砕物濃度(24時間観測ピーク値)の観測値から3241μg/㎡を大気中濃度として想定した。これは、当該試算に用いる降下火砕物の大気中濃度については、①噴火の規模がある程度大きいこと、②火口から観測点までの距離が本件発電所と評価対象となる九重山との距離(約108㎞)と比較的似ていること、③地表レベルで観測されていることなどが条件として考えられるところ、上記観測値は、①VEI4以上の大規模噴火であること、②噴火口より約40㎞程度離れたヘイマランド地区での観測値であり、本件発電所と評価対象となる九重山との距離に比べると近くなるため、保守的な値として用いることが可能であること、③地表レベルで観測された大気中濃度であることから、これらの条件に照らして適切であると評価した。

(ウ) 降下火砕物に対する安全性の確保

債務者は、降下火砕物の特徴等を踏まえ、降下火砕物による直接的影響と間接的影響を考慮し、本件発電所の安全性が損なわれないよう安全対策を講じた。

このうち、直接的影響については、次の対策を講じている。

- a 降下火砕物の荷重に対しては、降下堆積物が堆積し難い設計、もしくは施設の許容荷重が、降下火砕物による荷重に対して安全裕度を有することにより、構造健全性を失わず安全機能を損なわない設計としていること
- b 降下火砕物による化学的影響(腐食),水循環系の閉塞,内部にお ける摩耗等により安全機能を損なわない設計としていること
- c 外気取入口からの降下火砕物の侵入による機械的影響(閉塞)を考慮して、非常用ディーゼル発電機及び換気空調設備の外気取入口については、開口部を下向きの構造にするとともに、フィルタを設置して降下火砕物が内部に侵入しにくい設計とすること
- d 降下火砕物を含む空気の流路となる配管や弁については形状等によ り降下火砕物が流路に侵入しにくい設計とし、また、侵入した場合で も閉塞しにくい設計としていること
- 一方,間接的影響については,降下火砕物が送電設備の絶縁低下を生じさせることによる広範囲にわたる送電網の損傷による外部電源喪失及び発電所外での交通の途絶によるアクセス制限に対し,原子炉の停止並びに停止後の原子炉及び使用済燃料ピットの冷却に係る機能を担うために必要となる電源の供給が非常用ディーゼル発電機により継続できる設計とすることにより,安全機能を損なわない設計としている。
- カ 原子力規制委員会による審査結果(乙13)

原子力規制委員会は、債務者が実施した本件発電所に影響を及ぼし得る 火山の抽出は、階段ダイヤグラムの作成等により過去の火山活動履歴を評価して行われていることから、火山ガイドを踏まえていること、債務者が 実施した本件発電所の運用期間における火山活動に関する個別評価は、活動履歴の把握、地球物理学的手法によるマグマ溜まりの存在や規模等に関する知見に基づいており、火山ガイドを踏まえていることを確認するとと もに、債務者が本件発電所の運用期間に設計対応不可能な火山事象が本発電所に影響を及ぼす可能性は十分に小さいと評価していることは妥当であると判断した。

また、原子力規制委員会は、審査の過程において、九重山を対象とした 降下火山灰シミュレーションによる降下火砕物の厚さと既往文献による火 山灰等層厚線図との整合性を検討して評価するよう求め、これに応じた債 務者から、噴出量を6.2 km²とするケースで行った降下火山灰シミュレー ションに基づく影響評価を受けた。その結果、原子力規制委員会は、債務 者が実施した設計対応不可能な火山事象以外の火山事象の影響評価につき、 文献調査、地質調査等により、本件発電所への影響を評価するとともに、 数値シミュレーションによる降下火砕物の検討も行っており、火山ガイド を踏まえているとした。

3 争点

- (1) 司法審査の在り方(争点1)
- (2) 新規制基準の合理性(争点2)
- (3) 基準地震動策定の合理性(争点3)
- (4) 耐震設計における重要度分類の合理性(争点4)
- (5) 使用済燃料ピット等の安全性(争点5)
- (6) 地すべりと液状化現象による危険性(争点6)
- (7) 制御棒挿入に係る危険性(争点7)
- (8) 基準津波策定の合理性(争点8)
- (9) 火山事象の影響による危険性(争点9)
- 10 テロリズム対策の合理性(争点 10)
- 11) シビアアクシデント対策の合理性(争点11)
- (12) 保全の必要性(争点 12)
- (13) 担保金の額(争点13)

第3 争点に関する当事者の主張

1 争点1 (司法審査の在り方) について

(債権者らの主張)

(1) 原子力発電所でひとたび重大事故が起こると、その被害がいかに取り返し のつかないものであるかは、何より福島第一原発事故が如実に物語っている のであり、その被害が他の科学技術の利用に伴う被害と異なることは、①不 可逆・甚大性(放射線による被害は、DNA鎖の切断などによって引き起こ されるものであり、身体的影響の発がん又は遺伝的影響のリスクとなり、こ れは基本的に回復不能なもので、子孫に至るまで悪影響を及ぼす。)、②広 範囲性(福島第一原発事故の際には、最悪シナリオとして、最大で半径17 0km以遠にまで強制移転地域が、半径250km以遠にまで自主避難地域が広 がる可能性すら指摘されていたのであり、また、放射性物質は、風や海流に 乗って,日本のみならず地球規模で大気・海洋を汚染するというように被害 規模が極めて広範囲である。),③長期連続性(放射性物質の中には半減期 が長期間にわたるものも多く、特に燃料棒の反応によって生じるプルトニウ ム239は、2万4000年という極めて長期間の半減期を持ち、核廃棄物 の問題も含め、自己決定のできない将来世代に対してこのようなリスクや負 担を負わせることになる。), ④コミュニティ全体の破壊(原子力発電所事 故は、単に個人の生命や身体・健康だけでなく、その地域を全面的に汚染す ることから、コミュニティや社会的関係性を丸ごと全面的に破壊する。)と いう4つの視点から整理することができる。

福島第一原発事故によって、原子力発電所事故がいかに多くの人権を侵害するか、我が国の存立そのものにも影響を及ぼしかねないような広範囲に、長期間継続して、不可逆的かつ全面的な被害を引き起こすのかということが明白となったのであり、司法が人権の砦としての職責を果たすためには、仮に福島第一原発事故以前に同原発に対する差止訴訟が提起された場合に差止

が認められないような判断枠組みは採用されてはならない。

- (2) 原子力発電所に求められる安全性は、原子力発電所のリスクを社会が受容できるか否かという観点で判断されるべきであるが、この社会による受容性判断に当たっては、法律の規定や趣旨を踏まえつつ、原子力発電所事故被害の特殊性、原子力発電所の公益性の有無及び程度、世論調査等の結果、具体的な規制体制の変化の有無及び程度など諸般の事情を考慮して決すべきである。そして、これらの事情を考慮すれば、原子力発電所のリスクを社会が受容できるというためには、少なくとも「確立された国際的な基準」を踏まえていること、事故が起こることを常に想定し、その防止に最善かつ最大の努力をしたといい得ることが必要であり、このような基準を満たしていない以上、原子力発電所のリスクを社会は受容できないというべきである。換言すれば、福島第一原発事故後は、原子力発電所には、従前の「社会通念」という用語で表現された緩やかな安全性ではなく、極めて高度な安全性が要求されるというべきである。
- (3) そして,原子力発電所の運転差止訴訟(仮処分)においては,最高裁平成4年10月29日判決・民集46巻7号1174頁に基づき,立証(疎明)責任を事実上転換させ,債務者側において本件原子炉が安全であることを立証(疎明)すべきである。

(債務者の主張)

(1) 人格権に基づく妨害予防請求として原子力発電所の運転差止めを求める訴訟では、当該原子力発電所の安全性に欠けるところがあって、原告の人格権、すなわち、生命、身体が侵害される具体的危険性の存在についての主張立証責任は、人格権に基づく差止訴訟の一般原則どおり、原告が負うものである。したがって、その保全処分としての原子力発電所の運転差止めを求める仮処分においても、債権者が、被保全権利としての上記の具体的危険性の存在及び保全の必要性について主張、疎明責任を負う。

- (2) 仮に債務者において安全性に欠ける点のないことについて主張立証(疎明)する必要があるとしても、発電用原子炉の設置及び運転等については、重大事故等対策が強化されるとともに、段階的な規制の各段階において、専門性、独立性を有する原子力規制委員会による安全審査が行われるものとされており、さらに、既に許認可等を受けている場合であっても、設置許可基準に適合していない場合には原子炉の使用停止等の処分をすることができることなど、段階的かつ網羅的な体系により厳格な規制が行われている。原子力規制委員会による厳格な規制によって、当該発電用原子炉の安全性に欠けるところがないことが担保されていることを踏まえると、原子炉設置者は、原子力規制委員会から所要の許認可を受けるなどして現在の安全規制の下でその設置及び運転等がされていることを主張立証(疎明)すれば足りるというべきである。
- 2 争点2 (新規制基準の合理性) について

(債権者らの主張)

- (1) 新規制基準の手続的問題点
 - ア 原子力規制委員会の専門性,独立性の欠如

原子力規制委員会の実態は従前の組織と大きく変わるところがなく、安全規制に関する独立性と専門性を備えた機関となっていない。すなわち、設置法7条7項3号・4号は、委員長及び委員については原子力事業者等の役員、従業者等であったことを欠格事由としているが、委員である更田豊志は、委員候補者となった当時、独立行政法人日本原子力研究開発機構の副部門長の職にあり、設置法の欠格事由に該当することは明らかであるし、委員長である田中俊一(以下「田中委員長」という。)は、平成19年に政府の原子力推進機関である原子力委員会の委員長代理に就任するなど原子力推進行政の中心を担ってきた人物である。そのような人物をもって構成されている原子力規制委員会が策定した新規制基準は、手続上の瑕

疵があるというほかなく、不合理性が推認されるというべきである。

また、旧原子力安全委員会においても、委員長と委員は両議院の同意と 内閣総理大臣の任命という民主的な手続を経て選任されていた(原子力安 全委員会設置法5条1項)。そうであるにもかかわらず規制当局は事業者 の虜になってしまったのであるから、現在の原子力規制委員会における委 員長、委員の選任の仕組みが、規制の独立性を担保するということにもな らない。

イ 原子力規制庁の職員の多くが原子力推進にかかる官庁の職員であること原子力規制庁の実態は、平成24年9月同庁発足時の職員(455名)のうち経済産業省出身者が315名、文部科学省出身者が85名、環境省出身者が11名と、多くの職員がいわゆる原子力推進官庁の出身者であり、幹部職員7名についても、警察官僚の2名を除いた5人がいずれも原子力発電を推進してきた原子力安全・保安院、文部科学省(旧科学技術庁)、環境省の出身者であった。設置法附則6条2項ではいわゆる「ノーリターンルール」が定められたが、「原子力利用の推進に係る事務を所掌する行政組織」と抽象的文言にすることで、経済産業省、文部科学省等へ復帰することは禁止されなかったし、他の省庁へ異動した後は原子力規制庁の人事権は及ばないため、原子力推進機関へ復帰する道は事実上確保されているなど、その実態は原子力利用の推進側が規制を担ってきた従来と大きく変わっておらず、国会事故調査会の求めた「高い独立性」を備えているとは到底いえない。

新規制基準を策定しその適合性を審査するのは名目上、原子力規制委員会であるが、その事務局として原子力規制庁が実務の大半を担っているところ、かかる旧規制当局ないし原子力推進官庁出身の職員によって新規制基準が策定され、その適合性審査が行われるということは、設置法等福島第一原発事故後の原子力関係法令の趣旨に反する。

ウ 福島第一原発事故の原因究明は途上にあること

福島第一原発事故のような深刻な事故を万が一にも繰り返さないための新規制基準は、福島第一原発事故の原因が明らかになってこそ、初めて有効な規制内容となり得る。しかし、原子力規制委員会は、福島第一原発事故が未だ完全には収束せず原因が判明していないにもかかわらず、新規制基準を策定した。真に福島第一原発事故の教訓を踏まえた安全な規制基準を策定するのであれば、同事故の原因について徹底的な調査が不可欠であり、事故原因の調査が不十分なままに新たな規制基準を策定しても、災害の防止上支障がないものとは到底いえない。

エ 検討期間が短すぎること

平成24年9月19日に原子力規制委員会が発足し、新規制基準は平成25年7月8日から施行されているが、規則類の策定作業に着手してからの期間は、パブリックコメント実施までで約6か月、施行までで約8か月であって余りにも短すぎる。このような新規制基準策定の拙速さからしても、原子力規制委員会は、設置法が求める、事故防止のための最善かつ最大の努力をしていないことは明らかであって、新規制基準は災害の防止上支障がないものとは到底いえない。

オ パブリックコメントも形だけのものであること

パブリックコメントは、一般市民の意見や感覚を取り入れ、民主的な手続の下に適正な基準を策定するためになされるものであるところ、これほどの大量の基準類に対するものとしてはパブリックコメントの期間が極端に短く、また、規制の根本に関わるような重要な指摘を傾聴しさらに検討を重ねることをしておらず、単にパブリックコメントをしたという体裁を整えただけのものである。

カ 「世界で最も厳しい基準」という虚構

内閣総理大臣安倍晋三は、新規制基準について、「世界で最も厳しい基

準」と国会等で繰り返し言及し、田中委員長は、当初は「世界最高」ということについて言葉を濁していたが、現在の原子力規制委員会は世界で最も厳しい基準であると公言している。しかし、新規制基準が欧米先進各国の基準と比べて緩やかであることは明白であり、上記の各発言内容はいずれも虚偽であって、新たな安全神話の流布というよりほかない。日本政府と規制当局は、またも虚偽の風説を流布することにより、国民を錯誤に陥らせて、民主的議論を誤導し、世界的水準に後れた本件原子炉施設のリスクを無理矢理受け入れさせようとしている。かかる事実についても、新規制基準策定及び適合性審査の手続的な瑕疵として十分に考慮されるべきである。

(2) 新規制基準の実体的問題点

ア 基準の不明確性

原子力発電所の安全性の評価について海外では確率論的リスク評価を行うことが主流となっており、IAEAでは平成11年から、技術的安全目標として、既設炉の炉心損傷頻度を 10^{-4} /炉年、早期大規模(放射性物質)放出頻度を 10^{-5} /炉年と定めていた。日本でも福島第一原発事故の反省を踏まえ、真に「国際的な基準」に適った審査を追求するのであれば、当然これを規制基準に盛り込むべきであったが、新規制基準にはほとんど盛り込まれていない。

また,原子炉等規制法1条では,原子炉等による災害を防止して公共の安全を図るために,「大規模な自然災害及びテロリズムその他の犯罪行為の発生も想定した必要な規制を行う」ことにより「国民の生命,健康及び財産の保護,環境の保全並びに我が国の安全保障に資することを目的とする。」と規定されたが,一般に地震や津波,火山などの自然災害は,頻度が低くなればなるほど大規模なものが想定されるところ,この「大規模な自然災害」の明確な定義付けはなされていない。「適切」,「適正」とい

った曖昧で不明確な基準が数多く列記されている新規制基準の規定ぶりは、 安全審査指針類の規定が不明確であったことが、事業者及び規制当局の主 観的、恣意的な解釈を許し、ひいては福島第一原発事故を招来した反省を 何ら踏まえていない。我が国の規制当局において、事業者の「虜」となっ ていたことを真摯に踏まえるならば、新規制基準は、主観的、恣意的な解 釈を許さない、客観的で明確なものでなければならない。新規制基準は、 曖昧、不明確に過ぎて、「国際的な基準を踏まえ」た「災害の防止上支障 がないものとして定める基準」とはいえない不合理なものである。

イ 立地審査指針違反

原子炉等規制法第43条の3の6第1項4号は,文言上,「発電用原子炉施設の位置,構造及び設備が核燃料物質,核燃料物質によって汚染された物又は発電用原子炉による災害の防止上支障がないものとして原子力規制委員会規則で定める基準」とされており,立地審査を行うことは法律上の要請である。原子力関係法令改正の趣旨からすれば,福島第一原発事故前よりも緩やかな基準による審査は許容されるべきではない。そして,立地審査指針が改定されていない以上,従前の立地審査指針(「原子炉立地審査指針及びその適用に関する判断のめやすについて」(昭和39年5月27日原子力委員会決定))は現在も有効であるというべきである。

債務者は重大事故等対処施設を備えることによって代用している旨主張しているが、IAEAの基準等によれば、立地は重大事故対策が機能しない場合にも周辺住民の被曝を最小限に抑えるための最後の壁であり、重大事故対策の審査があればこの点の審査が不要になるというものではない。立地審査を経ないでよいとすることは、国際的な基準に反し、ひいては国際的な基準を踏まえて安全確保を図るべきことを規定した原子力基本法2条2項にも反する。

ウ 防災審査の不存在

IAEAは、原子力安全対策において、5層の深層防護という考え方を提示しているところ、原子力規制委員会は、新たに原子力災害対策指針を定め、原子力災害に備えた防災計画を作成すべき市町村は各原子力発電所から半径30㎞圏まで拡大し、各周辺自治体は新たに地域防災計画を作成することを迫られたが、原子力防災体制の整備は、「実用発電用原子炉及びその附属施設の位置、構造及び設備の基準に関する規則」等に何ら触れられていないため規制対象となっていない。しかし、IAEAの安全基準No.GS-R-2「原子力又は放射線の緊急事態に対する準備と対応」では、いかなる緊急事態においても、人への影響を最小にとどめることが意図され、事前の準備が確実に実行されることを求めているのであって、新規制基準は、確立した国際基準を踏まえるべきという原子力基本法2条2項に悖る状態となっている。

エ 放射性廃棄物処理方法審査の不存在

憲法11条は将来世代の国民の基本的人権をも保障しており、国家権力が原子力発電所の稼働という一時的な経済的便益のために、これによる廃棄物の管理や危険をほとんど未来永劫将来世代に対し押しつけるのは、憲法13条及び25条に違反する。原子炉等規制法は、環境の保全等に資するため、43条の3の5第2項8号で「使用済燃料の処分の方法」を設置許可申請書に記載することを要求し、43条の3の6第1項4号では「核燃料物質若しくは核燃料物質によって汚染された物…による災害の防止上支障がないもの」として原子力規制委員会規則で定めることを要求しているのであり、福島第一原発事故後の法改正により環境基本法が放射性物質による環境汚染に適用されるようになったこと、環境基本法4条は環境の保全につき、「環境への負荷の少ない健全な経済の発展を図りながら持続的に発展することができる社会が構築されることを旨とし、及び科学的知見の充実の下に環境の保全上の支障が未然に防がれることを旨として、行

われなければならない」と規定していること等からすると、法は、現在は もとより将来の国民の生命、健康及び財産の保護のみならず、生態系全体 への長期的な影響をも考えて、必要な規制を行うことを原子力規制委員会 に要請しているとみるべきである。そして、使用済核燃料その他の放射性 廃棄物が将来にわたって環境に影響を与えないための方策について新規制 基準に盛り込まず、したがってその点に関する審査を行わないまま再稼働 を許可し新たな放射性廃棄物を生み出すことを認めることは、原子炉等規 制法に違反する。

オ 環境基準等の設定欠如

原子力発電所は、平常時においても放射線及び放射性物質を環境中へ放出している。そして、玄海原子力発電所や泊原子力発電所等の周辺地域では、白血病や癌の確率が他の地域よりも有意に高いこと等が報告されており、平常運転時に放出された放射線や放射性物質の環境に対する影響は無視できない状況となっている。それなのに、これについては事業者の自主的対応に委ねられており、国としての規制は行われていない。したがって、この点について考慮されていない新規制基準は合理性がない。

(債務者の主張)

- (1) 新規制基準及び適合性審査の手続的問題点について
 - ア 原子力規制委員会の専門性,独立性の欠如等の主張について

設置法上、原子力規制委員会は、国家行政組織法3条2項に基づく、いわゆる3条委員会として高度の独立性が保障されている(設置法2条)。原子力規制委員会の委員長及び委員に福島第一原発事故以前に原子力発電を推進する立場にあった者が含まれていること自体は否定しないが、福島第一原発事故以前に原子力行政に関わっていた者は基本的には原子力を推進する中で各種業務に従事していたのであり、原子力規制委員会の委員長及び委員の人選にあたっては、この点を踏まえた上で、原子力の安全規制

に対する高い問題意識と責任感のある人物が選ばれ、両議院の同意と内閣 総理大臣による任命という民主的な手続を経て選任されているのであるか ら、原子力発電を推進する立場にあった者が含まれていることをもって独 立性が欠如しているということにはならないし、むしろ、そういった人物 を選任することによって委員の高度な専門性が確保されている。

また,原子力規制庁の職員を指揮命令監督する原子力規制庁長官は,原子力規制委員会委員長の命を受けて庁務を掌理する仕組みとなっており(設置法27条),規制当局としての独立性や専門性が確保されることとなる。

イ 福島第一原発事故の原因究明が途上であるとの主張について

福島第一原発事故については、国会、政府、民間、東京電力の4つの事故調査委員会がそれぞれ原因究明等を行って事故調査報告書を取りまとめているところ、新規制基準は、原子力規制委員会の下に新規制基準検討チーム、地震津波基準検討チーム等が置かれ、これらの検討結果を踏まえた検討がなされた上で制定されたものである。債権者らは、福島第一原発事故において地震動による安全上重要な機器の損傷の可能性があると述べるが、その可能性を指摘している報告書は国会の事故調査報告書のみであり、他の事故調査委員会等の報告書においては、地震動による福島第一原発の安全上重要な設備の損傷は認められておらず、福島第一原発事故の原因究明がなされていない中で新規制基準が制定されたということはできない。

ウ 新規制基準策定の検討期間が短い等の主張について

新規制基準検討チーム, 地震津波基準検討チーム等の会合に, 原子力規制委員会担当委員, 多様な学問分野の外部専門家をはじめ, 原子力規制庁及び旧独立行政法人原子力安全基盤機構の職員らが出席し, それぞれ約8か月間, 多数回にわたる会合において議論が重ねられたこと, 外部専門家については, 透明性・中立性を確保するため, 電気事業者等との関係につ

いて自己申告を行うことが求められ、申告内容は同委員会のウェブサイト上で公開されたこと、新規制基準の検討にあたっては、意見公募手続(パブリックコメント)が2度にわたって行われ、原子力規制委員会規則等に加え、同委員会の内規(審査基準に関する内規、規制基準に関連する内規及び許認可等の手続に関連する内規)についても、同手続の対象とされたことなどの新規制基準の検討経緯は、専門性、透明性、中立性を確保しつつ、迅速な制度整備が行われたことを示している。

これに鑑みれば、検討期間が約8か月間であることは、直ちに新規制基準の不合理性を基礎付けるものとはならない。また、パブリックコメントについても、多数の意見が寄せられ、これらが新規制基準を策定する過程で議論の素材とされているのであるから、パブリックコメントが形式的なものであったともいえない。

エ 新規制基準が欧米先進各国の基準と比べて緩やかである等の主張について

新規制基準は、IAEA等の国際機関の定める安全基準を含む海外の規制動向等をも踏まえて策定されているのであるから、新規制基準は欧米先進各国の基準と比べて緩やかであることは明白であるとする債権者らの主張には理由がない。

(2) 新規制基準の実体的問題点について

ア 「基準の不明確性」について

自然的立地条件や原子炉の型式等が原子力発電所ごとに異なることに鑑みれば、画一的な基準を定めることはそもそも困難であることに加え、原子力規制委員会における新規制基準適合性審査においては、高度の独立性が担保された科学的、専門技術的知見を有する委員等によって厳格な審議、検討がなされることとなるため、「適切」「適正」といった表現は、むしろ極めて保守的かつ厳格な審査をもたらすものである。実際、本件原子炉

施設に係る原子力規制委員会による審査の過程においては、福島第一原発 事故の反省等を踏まえ、地震動評価、重大事故等対処設備を用いた対策の 有効性評価等における不確かさの考慮が十分なものであるかが厳しく審査 された結果、債務者は多種多様な不確かさを考慮することとなっている。

イ 「立地審査指針違反」について

設置許可基準規則解釈においては、従前の審査において用いられていた 安全審査指針類の一部等を引用するとされており、例えば、同解釈15条 7項によると、原子炉に装荷する燃料の設計手法について、「発電用軽水 型原子炉の燃料設計手法について」(昭和63年5月12日原子力安全委 員会了承)に基づいて確認することとされている一方で、立地審査指針に ついては、同解釈において引用されていない。設置許可基準規則解釈にお いて立地審査指針が引用されていないのは、新規制基準においては、設計 基準を超える事故の発生に対して原子炉施設と公衆との離隔を確保するこ とによって影響を回避するのではなく、重大事故等対処施設を備えること によって、放射性物質が異常な水準で外部に放出されることを防ぎ、周辺 の住民及び環境を保全することとしたためであると考えられる。

ウ 「防災審査の不存在」について

原子力防災については、原子力災害対策特別措置法が定めるとおり、同法、原子炉等規制法、災害対策基本法等が相まって、かかる法体系全体を通じて、避難計画策定を含む原子力防災対策が講じられることとなっている。そして、原子力防災対策については、福島第一原発事故以降、ICRP(国際放射線防護委員会)の勧告、IAEAの安全基準の制定・改定等の国際的な動向を踏まえ、中央防災会議により防災基本計画(原子力災害対策編)が改正されるとともに、原子力規制委員会により原子力災害対策指針が策定されるなどして、新たな制度枠組みが設定され、この制度枠組みの下で、国、地方公共団体及び原子力事業者は、仮に原子力災害が生じ

た場合にも住民等の被曝防護措置に向けた役割を適切に果たすべく, 防災 組織の構築, 情報連絡体制の整備, 資機材の確保, 計画等の策定等の準備 を行い, 緊急事態発生時においては, 連携して原子力防災対策を実施し, 住民等に対する防護措置を行うこととしている。

債権者らは、原子力防災対策について原子力規制委員会が審査する構造となっていないことをもって新規制基準が不十分なものであるかのように主張するが、このような債権者らの主張は、上記で述べた原子力防災対策の枠組み、内容、関係者の取組みを理解しないまま行われた、一種の立法論であって、適切ではない。

エ 「放射性廃棄物処理方法審査の不存在」について

債務者は、法に基づく指定を受けた国内再処理事業者において再処理を行うことを原則とし、再処理されるまでの間、適切に貯蔵・管理することとしており、この方針については国による確認を受けるなどしている。なお、高レベル放射性廃棄物の処分について、現時点で最終処分地の選定まで至っていないのは事実であるが、国が前面に立って最終処分に向けた取組を進めることとしていることに加え、そもそも高レベル放射性廃棄物の処分方法等が債権者らの人格権侵害を理由とする本件原子炉施設の運転差止請求権との関係性は不明であって、債権者らの主張は失当である。

オ 「環境基準等の設定欠如」について

原子力発電所の平常運転に伴って周辺の一般公衆が受ける放射線量については、実用発電用原子炉の設置、運転等に関する規則及びこれを受けた原子力規制委員会告示により、いわゆる線量限度値が定められているし、それとは別に線量目標値指針により線量目標値が策定されている。したがって、債権者らの主張は前提を欠いている。

なお, そもそも平常運転時における微量の放射性物質の放出が, 本件原 子炉から相当遠方に居住する債権者らの人格権侵害とどう関係するのか不 明である。

- 3 争点3 (基準地震動策定の合理性) について
- (1) 敷地ごとに震源を特定して策定する地震動(内陸地殻内地震)について (債権者らの主張)

ア 応答スペクトルに基づく地震動評価

- (ア) 地震規模の推定について
 - a 地震規模の推定方法が不適切であること

債務者は、応答スペクトルに基づく地震動評価において、地震本部の「『活断層の長期評価手法』報告書」(以下「長期評価手法」という。)に従い、 $480 \, \mathrm{km}$ 及び $130 \, \mathrm{km}$ の各ケースについては、長さが $80 \, \mathrm{km}$ 以下になるようにセグメント区分し、セグメント毎に松田式を用いて地震規模を算出して合計し、 $480 \, \mathrm{km}$ ケースは Mw 7. 9(M 8. 5)、 $130 \, \mathrm{km}$ ケースは Mw 7. 5(M 8. 1)としている。

しかし、日本で長さ80km以上の長大な活断層での地震について、地震波形記録を用いて断層面上のパラメータを推定した事例は、1891年濃尾地震(M8.0。以下「濃尾地震」という。)に限られており、長大な活断層から生じた地震の記録は世界的にも稀であり、現段階において、480km又は130kmという長さの活断層から発生する地震規模を推定する手法は確立していないのであり、100km以下の活断層から地震規模を推定する場合よりも認識論的不確定性はさらに大きく、過小評価のおそれは大きいといわざるを得ない。松田式を100kmを超える長大な断層に適用することは必ずしも一般的な手法ではないかもしれないが、世界の観測記録上100kmの長さの活断層に松田式が当てはまらないというのは明確ではないし、松田式を提唱した東京大学名誉教授・松田時彦(以下「松田名誉教授」という。)も中央構造線四国断層帯(180km)に松田式を適用しているなど、

その適用性が全く否定されているわけではない。そして、断層長さ480km,130kmをそれぞれ松田式に当てはめると、それぞれマグニチュードは9.3と8.4になるのであるから、この程度の地震規模を想定しない債務者の基準地震動の策定は不合理である。

この点、債務者は、断層幅(地震発生層の厚さ)や断層面におけるすべり量の飽和に伴い、スケーリング関係が変化する(3段階に折れ曲がる)から、松田式を480kmと130kmの各ケースにそのまま当てはめることはできないと主張する。しかし、中央構造線断層帯のような日本の長大な活断層においてもすべり量が飽和するとの確立した見解はない。地震本部が平成28年6月に作成した「震源断層を特定した地震の強震動予測手法(『レシピ』)(以下「改訂レシピ」という。)には、震源断層の面積と地震モーメントについて3つのスケーリング則が掲載されているが、長大な断層に適用される3つ目のスケーリング則(Murotani et al.(2015))は、断層幅と平均すべり量の両方が飽和している場合に用いることが望ましいとの注意書きが付されており、すべり量が飽和してスケーリング則が3段階に折れ曲がるのか、折れ曲がるとしてどの辺で折れ曲がるのかについて、少なくとも観測例がほとんどない日本の長大な活断層については、確立された知見はない。

本件では確立された知見がない中で、いずれのモデルを採用すれば 万が一の事故を防ぐことができるかという問題であり、そういった発 想に立つ限り、130kmケースや480kmケースにも松田式を適用す べきである。債務者の手法は、一定の学術的な裏付けがあるとはいえ、 認識論的不確定性を十分に踏まえ「最大潜在マグニチュード」を算出 することが要請されている原子力発電所の耐震設計においては、不適 切、不合理というほかない。

b 不確かさの考慮について

(a) 松田式等のばらつきを考慮していないこと

震源モデルの長さと地震規模を関連付ける経験式を用いて地震規模を設定する場合、当該経験式が有するばらつきを考慮することを、地震ガイドは明確に義務付けている。松田式は震源モデルの長さと地震規模を関連付ける経験式であるので、このばらつきを債務者が考慮しないことは、地震ガイドの同規定に違反することとなる。

債務者は、気象庁マグニチュードと地震モーメントとは相関関係 にあり、地震モーメントと震源断層面積とが相関関係にあると述べ た上、断層幅の違いによって松田式にばらつきが生じることは認め、 さらにそれ以外の地域特性によってもばらつきが生じる可能性も認 めている。また、気象庁と地震モーメントとの間に正確な比例関係 はなく、これについての代表的な関係式である武村(1990)において 提示された経験式(以下「武村式(1990)」という。) も大きなばら つきのある経験式であり、比較的データが豊富なM7あたりでも、 同じ気象庁マグニチュードに対し地震モーメントの最大値と最小値 とで10倍以上のばらつきがある。さらに、仮に震源断層の面積を 事前に正確に特定できたとしても地震モーメント予測の上ではばら つきが生じるのであり、同じ震源断層面積当たりでみると、地震モ ーメントの最大値と最小値とでは概ね10倍程度のばらつきがある。 このように敷地前断層群から発生する地震につき、松田式による 地震規模の推定に誤差が生じる可能性は十分にあるから、敷地前面 海域の断層群から生じる最大規模の地震を想定するためには、松田 式のばらつきを定量的に予測結果に上乗せしなければならない。

(b) 断層長さの認識論的不確定性の考慮が不十分であること 地震発生前に地下の震源断層の長さは正確には分からないので、

地表地震断層の長さを松田式に当てはめざるを得ないところ,数多くの地震では地震後も地震規模に見合った長さの地震断層が出現しておらず、地震前の調査で震源の位置や断層の長さ等を把握することはまず不可能である。このような震源断層長さの認識論的不確定性という観点からすると、債務者の資料や考え方を前提としても、本件原子炉の敷地前面海域の断層群から地震が発生する場合に活動する断層長さについて、想定できるパターンは多い。応答スペクトルに基づく地震動評価では、69kmケースの北傾斜モデルが最大の地震動評価となっているが、松田式をそのまま適用することを前提とすれば、90kmケースや103kmケースがそれ以上の地震動評価になる可能性は高い。こういったケースをも想定しなければ、想定し得る最大の地震動を想定したことにはならない。

c 地震本部による評価と比較して過小評価であること

地震本部が作成した「中央構造線断層帯(金剛山地東縁-伊予灘)の長期評価(一部改訂)について」(以下「中央構造線の長期評価」という。)では、断層面上のずれの量を用いて、想定される地震規模は、「石鎚山脈北縁西部一伊予灘 川上断層一伊予灘西部断層」(L=130km)においてMw7.4-8.0と、「断層帯全体 当麻断層一伊予灘西部断層」(L=360km)においてMw7.9-8.4と算定されている。ここからしても、130kmケースではMw7.5、480kmケースではMw7.9という債務者の想定は、明らかに過小である。

債務者は、中央構造線の長期評価は地表変位量(7m)が平均すべり量と同じという仮定や平均すべり量が全長(約130km)にわたって同一であるという仮定のもと算出されたものであるが、これは中央構造線断層帯の地表変位量が2~3mと確認したとする場・後藤

(2006)の知見や、地表最大変位量は平均すべり量の概ね2~3倍であるなどとする室谷ほか(2009)及び室谷ほか(2010)の知見に反するなどと主張する。しかし、中央構造線の長期評価は、堤・後藤(2006)を前提とした上で、トレンチ調査によっては各区間の最大のずれを確認できない場合も多々あり、また最新の活動以外のずれの量を確認することも困難であるため、「川上断層一伊予灘西部断層」でも同じ中央構造線断層帯に属する他の区間と同じだけの変位を起こした可能性は十分に考えられるとし、讃岐南縁で確認された7mのずれを「川上断層一伊予灘西部断層」でも最大値に設定したものであるなど、上記各知見を踏まえても、その内容は何ら不合理ではない。債務者は中央構造線の長期評価においても当然の前提とされている不確実性を殊更に取り上げて、その価値を不当におとしめ、自身の過小評価を正当化しようとしているに過ぎない。

なお、地震本部はずれの量を全ての区間で $7 \, \text{m}$ と仮定しない場合のモーメントマグニチュードも算出し、当麻断層ー伊予灘西部断層まで約 $360 \, \text{km}$ 区間につき $M \, \text{w} \, 7$. 9-8. $3 \, \text{b}$ している。この数値からしても、債務者の想定($480 \, \text{km}$ ケースで $M \, \text{w} \, 7$. 7-8. 0)はやはり過小である。

(イ) 距離減衰式の適用について

a 耐専式の適用排除が恣意的であること

債務者は、54km、69km及び130kmの各鉛直ケースについて、 耐専式の検証データが少ない範囲であること及び内陸補正をしても9 つのその他距離減衰式の適用結果と大きく乖離することを理由に、そ の適用を排除している。債務者の資料上、これらのケースについても 北傾斜と同じく耐専式を適用すれば、650ガルはおろかクリフェッ ジの855ガルをも超える応答スペクトルが導かれることが明らかに なっており、これらのケースで耐専式の適用を排除してよいのかは慎 重に検討されなければならない。

そうであるところ、耐専式が経験式である以上、観測記録との整合性は重要であるが、耐専式の適用限界である極近距離より等価震源距離が短い鳥取県西部地震・賀祥ダムの観測記録(M7.3、等価震源距離6km)などの、本件で債務者が適用を排除した各ケースと大きく条件が異ならないケースについても、耐専式と観測記録は通常のばらつきの範囲で概ね整合していることが確認できるのであり、等価震源距離の短さから適用性が否定されるほど観測記録と再現記録とに大きな乖離があるデータは見当たらない。

また、もともと耐専式は、本件原子炉の解放基盤表面のような硬い 岩盤(本件原子炉はVs=2600km/秒)上の耐震設計のために作成された距離減衰式である、中央構造線断層帯から発生する可能性がある破壊伝播効果を考慮できるなどの利点があり、だからこそ債務者はこれを基本的な手法として採用していたはずである。一方で、債務者が耐専式の代わりに検討したその他距離減衰式においては、破壊伝播効果は考慮できず、元データの地盤条件も本件原子炉敷地の解放基盤表面までは対応していない。鉛直地震動の評価もできないため、水平方向と上下方向で不整合が生じてしまう。また、100kmを超えるような国内の長大断層のデータベースがないことは耐専式と変わりがないのであり、債務者が選び出した距離減衰式であれば上記各ケースにおいて耐専式より精度よく最大の地震動を予測できるという根拠は特にない。

債務者が、上記のような事情を比較衡量した形跡はなく、「その他の距離減衰式」の方が耐専式よりも精度の高い地震動予測ができるとは到底考えられない。債務者が耐専式の適用結果との乖離を示し、そ

の適用を排除するため恣意的に9つの「その他の距離減衰式」を選定 した疑いはますます濃い。

b 不確かさの考慮について

(a) 耐専式のばらつきの考慮が不十分であること

債務者が応答スペクトルに基づく地震動評価において基本として用いている耐専式は、地震動の平均像を求める距離減衰式であり、これによって地震動を予測するとほぼ不可避的にばらつき(誤差)が発生するものであり、国内観測記録から、地震の種類、地震規模や震央距離、震源深さを限定して、解放基盤上や地震基盤上の記録と比較しても、耐専式のばらつきは標準偏差で2倍程度であるとされている。仮に債務者が本件敷地の地域特性の把握に努めていたとしても、いかなる要因が地震動を大きくさせることになるかについて、十分なデータや知見の集積もなければ、地下深くにある震源断層を精度良く調査する技術も存在しないため、これをゼロにすることは不可能である。債務者は、国内各地の原子力発電所において基準地震動を超える地震動が観測されたことがこの約10年間で5回あったという事実等を踏まえた上で、既往の研究成果を活用して偶然的不確定性によるばらつきを定量的に評価し、基準地震動評価に取り込むべきであるが、これを怠っている。

(b) 不確かさの考慮が不十分であること

設置許可基準規則解釈別記2第4条5項二⑤には、応答スペクトルに基づく地震動評価についても、基準地震動の策定過程に伴う各種の不確かさを考慮すべきことが規定されているところ、債務者が不十分ながらも考慮したのは、具体的には、①断層長さの約480km、約130km及び約54kmに加え約69kmのケースを設定したこと、②それぞれのケースについて断層傾斜角が鉛直と北傾斜のケー

スを考慮したこと、③内陸補正を行わなかったことである。

しかし、上記①及び②について、耐専式のばらつきは、マグニチュードと等価震源距離を固定したときでも生じるものであるのに対し、債務者が不確かさとして考慮したのは、①敷地前面海域の断層群が活動する際にどこまでが活動するのか分からないことに起因するマグニチュード等の不確定性及び②調査技術の限界により断層傾斜角が確定できないことによる等価震源距離の不確定性であって、耐専式の本来のばらつきとは別のものであるから、債務者が適切に不確かさの考慮をしたとはいえない。

上記③について、債務者は、本件原子炉において、内陸地殻内地震の補正係数を乗じなかったことをもって保守的に評価したと主張するようであるが、補正係数を用いないのは、新潟県中越沖地震の震源特性から、断層パラメータの評価の仕方の問題により短周期レベルを1.5倍する必要があることが認識されたことに対応するものであり、これをもって殊更に余裕を確保していると見ることはできない。耐専式を用いる場合でもアスペリティ位置を変えたケースを有意に考慮することもできるが、債務者はこれさえ行っていないようである。内陸補正をするよりもしない方が保守的な想定ではあるが、これでは耐専式のばらつきをとても補えない。

(c) 南傾斜モデルを考慮しなかったことなどについて

債務者は、断層モデルを用いた地震動評価においては南傾斜モデルを考慮しているが、応答スペクトルに基づく地震動評価においては、「断層最短距離を用いた距離減衰式で評価することとなるため、地震動は鉛直ケースと同じになる」として、これを考慮していない。しかし、敷地前面海域の断層群が南傾斜となっている可能性は現実的に考えられる。南傾斜の場合、震源が敷地直下に近づくため、よ

り大きな地震動が敷地を襲う可能性が高く,このときの影響は,耐 専式のような等価震源距離をパラメータとしている距離減衰式であ れば考慮できる一方,債務者が採用した断層最短距離をパラメータ とするその他距離減衰式では考慮できない。

また、債務者は北傾斜モデルについては、54km、69km、130km、480kmの各ケースにつき耐専式を適用しているが、地震動がもっとも大きく評価されているのは69kmケースであり、次いで54km、130kmとなり、480kmケースが地震動は最も小さく評価されている。これは、耐専式が等価震源距離というパラメータを用いているためであり、断層が敷地から遠ざかる方向に長くなると等価震源距離が長くなり、松田式で地震規模が多少大きく評価されてもその効果を打ち消してさらに余りあるほど地震動を小さくさせてしまうからである。しかし、480kmケースは130kmケースを、130kmケースは69kmケースを、69kmケースは130kmケースを、それぞれ包含しているのであり、断層が短い方が地震規模は小さく評価されているにもかかわらず地震動が大きくなるという地震動予測結果を科学的に正当化することは不可能であり、この点を不確かさとして考慮すべきである。

イ 断層モデルを用いた地震動評価

- (ア) 基本震源モデルの設定について
 - a レシピ改訂による見直しの必要性

地震本部は、改訂レシピにおいて、断層幅と平均すべり量が飽和している場合は、Murotani et al. (2015) の提案による「地震モーメントMo=震源断層面積 $S \times 10^{17}$ 」の式を用いることが望ましいとしつつ、原理的には断層幅と平均すべり量が飽和しているかどうかでスケーリング則が変わるとした上で、利便性に配慮して機械的に値が求

められるように、Murotani et al. (2015)の適用下限値をMo=1. $8\times 10^{20}\,N$ ・mとしている。この適用下限値は、改訂レシピに記載されている Murotani et al. (2015)又は入倉・三宅(2001)に適用して震源断層面積に直すと $1800\,km^2$ を意味する。また、改訂レシピは、長大な断層について、アスペリティ面積比を22%、静的応力降下量の暫定値として Fujii and Matsu'ura(2000)を参照して $3.1\,km$ を与える取扱いは、暫定的に、断層幅と平均すべり量とが飽和する目安となるkm0 = $1.8\times 10^{20}\,km$ を上回る断層の地震を対象とするとしている。

しかし、債務者は、① 5 4 km ケースに Fujii and Matsu'ura (2000)の静的応力降下量3. 1 MPaを適用しているが、その地震モーメントは、2. 74×10^{19} (鉛直モデル)、2. 83×10^{19} (南傾斜モデル)、又は1. 10×10^{20} (北傾斜モデル)であって、いずれも改訂レシピが静的応力降下量として3. 1 MPaを与えてよい 閾値を下回る。また、② 130 km ケースでは、その震源断層面積の設定は 1638 km であって、面積を基準とする限り、Murotani et al. (2015)の適用下限値に達しない。上記①、②の取扱いは、いずれも改訂レシピで示された閾値に達しないにもかかわらず、断層幅と平均すべり量が飽和している場合に適用することが許される静的応力降下量やスケーリング則を適用している点で合理性を欠いている。

- b 長大な断層に用いる手法が未検証であることについて
 - (a) 債務者の手法は一つの仮説にすぎないこと

債務者が用いた壇ほか(2011)やFujii and Matsu' ura(2000)を含む長大な横ずれ断層に対する強震動評価の現時点での体系は、仮定の上に仮定を重ねたものとなっており、実際の強震記録によって検証されていない。債務者は、アスペリティ応力降下量を1.5倍又

は20MPaにする等の「不確かさ考慮」も行っているが、現時点では480kmに及ぶような長大断層の地震のデータが得られていないため、不確かさを考慮した場合でも真値の平均値にさえ届いていない可能性がある。

(b) すべり量が飽和しない可能性を考慮すべきこと

壇ほか(2011)では、震源断層長さが約80kmを超えると平均すべり量はほぼ3mで一定という結論を導くことになっている。しかし、すべり量は、断層が連動しても変わらないという考え方と、断層の連動が長くなれば大きくなるという考え方があって、中央構造線地震帯がどちらなのかは分からないのであり、どちらの見解もあり得る以上は、認識論的不確定性の問題としてより大きな地震動評価をもたらす方法を採用すべきである。地震本部は当麻断層一伊予灘西部断層において、最大の想定として、ずれの量を全ての区間で7mと仮定して各区間においてモーメントを算出しているが、原子力発電所の耐震設計においては最低限、この地震本部の評価を用いるべきである。

(c) 断層幅と応力降下量の設定が不合理であること

壇ほか(2011)に引用されている Irie et al. (2010)では、断層幅 (Wmax) を15kmと仮定したシミュレーションにより各地震の平均動的応力降下量が算出されている (平均動的応力降下量とWmax は反比例する関係にある)ところ、壇ほか(2011)で用いられている 関係式から導出すると、国内9地震の平均断層幅は12kmとなることから、Wmax を15kmから12kmに設定し直すと、平均動的応力降下量は4.3MPaに引き上げなければならない。平均動的応力降下量を4.3MPaとした上でレシピに記載されたアスペリティ面積比22%を採用すると、アスペリティ動的応力降下量は19.5M

Paとなる。壇ほか(2011)で短周期レベルが記載されている1995年兵庫県南部地震(以下「兵庫県南部地震」という。),鳥取県西部地震及び2005年福岡県西方沖地震(以下「福岡県西方沖地震」という。)については、それぞれ、アスペリティの動的応力降下量が31.9MPa,6.7MPa及び18.9MPaと算定されており、この3つの数値の算術平均は19.2MPaとなることからしても、債務者の設定する12.2MPaというのは過小評価のおそれが大きい。

- c 480kmと130kmケースへの入倉・三宅(2001)の適用可能性
 - (a) Fujii and Matsu'ura(2000)の問題点

債務者は、スケーリング則の違いによる影響評価を行うため、Fujii and Matsu' ura (2000) による評価も行っているが、この手法には壇ほか (2011) とほぼ同じ問題があり、地震動の過小評価の問題を解消することになっていない。応力降下量3.1 MPa、アスペリティ応力降下量約14.4 MPaというのは、断層幅を15kmと設定する等いくつかの条件下で導出された値であり、その適用範囲等について今後十分に検討されなければならない暫定値に過ぎない。当該手法を適用することによる不確定性を十分に見込まなければ、万が一の深刻な事態を考慮しなければならない原子力発電所の耐震設計に適用できるものにはならない。

(b) 入倉・三宅(2001)を適用すべきこと

債務者は、 $130 \, \text{km} \, \text{と} \, 480 \, \text{km} \, \text{の8}$ ケースにつき、レシピに記載された入倉・三宅(2001)を適用していない。しかし、レシピでは入倉・三宅(2001)によって地震モーメントを推定する場合の上限を、 $Mo=1.0\times10^{21}\, \text{N}\cdot\text{m}$ としている(入倉・三宅(2001)によれば、震源断層面積 $4240 \, \text{km}^3$ に相当する。)のに対し、債務者

は480kmケースにつき、壇ほか(2011)により、震源断層面積を6 $124km^3$ としながら、地震モーメントは上記閾値を下回る5.3 0×10^{20} と算出していることからすれば、壇ほか(2011)では、レシピにおける入倉・三宅(2001)の適用上限を超える震源断層面積を当てはめた場合でも、上限の半分程度の地震モーメントしか算出されないことが分かる。原子力規制委員会は、レシピよりも大幅に地震モーメントを過小評価していることを質さなければならなかったのに、そのような審査が行われた形跡はない。

d 5.4 kmケースでの入倉・三宅(2001)による過小評価

(a) 入倉・三宅(2001)には過小評価のおそれがあること

債務者は、54kmケースのスケーリング則として、基本として擅ほか(2011)を採用するほか、入倉・三宅(2001)を基本震源モデルに織り込んでいる。しかし、入倉・三宅(2001)については、原子力規制委員会の元委員長代理島﨑邦彦(以下「島﨑元委員長代理」という。)が、断層傾斜角が60-90度で、断層のずれが大きい場合には、地震モーメントが過小評価される可能性があり、慎重な検討が必要であることを明らかにしているほか、平成18年の中央防災会議等も地震規模を過小評価するおそれを指摘している。したがって、債務者が54kmケースに入倉・三宅(2001)を採用したことは、入倉・三宅(2001)の過小評価の問題を看過したものであって、瑕疵が著しい。

(b) 松田式等他の式も用いるべきこと

入倉・三宅(2001)は、地震本部が平成17年3月に公表した時点での強震動予測手法において地震規模を求める唯一の式として紹介され、その後の強震動評価で用いられてきたが、活断層の情報から地震規模を想定する上では、入倉・三宅(2001)よりも松田式等の方

が妥当と判断されたことから、平成20年4月11日に改訂された 強震動予測手法から、入倉・三宅(2001)と並んで松田式が地震規模 を求める関係式として採用されるに至っている。したがって、漫然 と入倉・三宅(2001)で算出した地震規模は、想定し得る最大の地震 規模とはいえないのはもちろん、その平均値すら大きく下回るおそ れが強い。特に敷地前面海域の断層群のように地震発生層が比較的 薄いところにある高角の活断層については、入倉・三宅(2001)だけ でなく松田式等他の式をも用いた地震規模の想定を行い、いずれか 大きい方を採用した上でばらつきを考慮するという方式を採用しな ければ、保守性に欠けることは明らかである。

(イ) 不確かさの考慮について

- a スケーリング則のばらつきについて
 - (a) スケーリング則にばらつきがあること

断層モデルを用いた地震動評価では、震源断層の面積から地震規模(地震モーメント)を求める式として、壇ほか(2011)、Fujii&Matsu'ura(2000)、入倉・三宅(2001)がそれぞれ用いられている。これらの経験式は平均値としての地震規模を与えるべく提案された、ばらつきを内包するものであるため、地震ガイドやIAEAの基準に従う限り当然これを考慮しなければならないのに、債務者及び原子力規制委員会はこれを考慮していない。震源断層面積から地震モーメントを求める式のばらつきは1.6倍、アスペリティ総面積と総断層面積との関係式のばらつきは1.34倍であるとされており、ばらつきの定量的評価は十分可能であるはずなのに、債務者はそれを怠っている。

(b) 地域特性にすぎないとの債務者の主張について 債務者は、入倉・三宅(2001)でばらつきが生じるのは個々の観測 記録の地域特性のためであり、それは本件発電所の地域特性とは異なるから、入倉・三宅(2001)に記載されたばらつきを地震動評価に用いるのは適切ではないと主張する。仮に債務者が主張するとおり、入倉・三宅(2001)のばらつきが個々の観測記録の地域特性の反映によるものであるとしても、ばらつきを生じさせている地域特性が具体的にどのようなもので、そのような特性が本当に本件発電所にはないといえるのか、債務者は明らかにしていない。ばらつきを生じさせる地域特性というものが仮にあるとしても、それを漏れなく抽出するようなことは不可能である。結局、実際に敷地前面海域の断層群が活動したとき、その地震規模が入倉・三宅(2001)による推定値よりも大きくなるか、小さくなるかは、誰も分からない。入倉・三宅(2001)に記載された元データのばらつきは、その誤差を定量的に評価する際に十分参照できるものであり、これを用いることが適切ではないという債務者の主張は根拠を欠く。

b グリーン関数法のばらつき等について

経験的グリーン関数法は、レシピでは、「想定する断層の震源域で発生した中小地震の波形を要素波(グリーン関数)として、想定する断層の破壊過程に応じて足し合わせる方法」とされているが、債務者は、中央構造線断層帯から発生する内陸地殻内地震とはまったく性質が異なる、平成13年3月26日に安芸灘で発生した海洋プレート内地震1つだけを要素地震として採用しており、レシピに記載されている方法にさえ反している。海洋プレート内地震は内陸地殻内地震よりも応力降下量が大きくなる性質を有するが、グリーン関数法では応力降下量の比によって強震動計算が行われることになるため、海洋プレート内地震を要素地震とすると過小評価のおそれが高い。債務者は、480kmケースについて統計的グリーン関数法による応答スペクトル

と比較し、経験的グリーン関数法と整合的であると述べているが、少なくとも南北方向の周期 0.3 秒以上では経験的グリーン関数法が統計的グリーン関数法よりも大幅に地震動を過小評価する結果が示されており、これを「整合的」というのはあるべき慎重さに欠ける。

債務者のグリーン関数法については再検討を行った上、そのばらつきを評価することが行われない限り、SSG-9が要求する震源モデルシミュレーションのばらつきを考慮したことにはならず、地震ガイドが要求する経験的グリーン関数法の要素地震の設定の妥当性にも欠ける。

c 不確定性の考慮の不十分さ

断層モデルに基づく強震動予測手法は、もともと地震現象の物理的記述を目的としたところから出発した技術であり、その出自から、震源のモデル化を中心に、予測時には決定困難なパラメータを多数設定しなければならないという難点を抱えている。このような断層モデルを用いた手法の特質を踏まえるならば、年超過確率を1万分の1から100万分の1という極めて低頻度に抑えることを前提とした原子力発電所の基準地震動の策定の上でこれを用いるためには、予測される地震動のばらつきや発生確率をできるだけ正確に見積もった上で、各経験式のばらつき、認識論的不確定性と偶然論的不確定性等を十二分に考慮に入れたパラメータスタディを行わなければならない。

しかし、債務者の不確かさの考慮は、そのような緻密さも慎重さも 著しく欠けており、設置許可基準規則解釈等の要請に応えているとは 到底いえない。債権者らは、地震動の予測結果には一部の偶発的不確 定性に起因するものだけで倍半分程度のばらつきが生じることを示し たが、これに対し、債務者は、なぜ債務者の不確かさの考慮で十分と いえるのかについての具体的な根拠もないまま「不確かさの考慮は十 分」と主張しているに過ぎない。債務者は、応力降下量、断層傾斜角、破壊伝播速度及びアスペリティの平面位置という各パラメータにつき、事前の調査、経験式等によってモデルを特定することが可能な不確かさであるとして、これらを重畳させて考慮することはしていないが、これらのパラメータについても債務者は事前に特定できていないことは疑いなく、同時に不利な方向へばらつくことは十分に考えられる。その点で債務者が基本震源モデルに織り込むこととした偶然的な不確かさ及び事前にモデルを特定することが困難な不確かさと変わりがなく、これらの重畳を考慮しないのは不適切である。

(債務者の主張)

ア 応答スペクトルに基づく地震動評価

- (ア) 松田式による地震規模の推定
 - a 松田式の適用方法について
 - (a) 債務者の手法の合理性

債務者は、敷地前面海域の断層群(中央構造線断層帯)の地震規模については、松田式の適用が長さ80km以下の断層に限られると考えられていることから、概ね80km以下になるように断層長さを区分し、区分した断層長さごとに算出した地震規模を合計することにより、断層全体の地震規模を求めた。この手法は、地震本部による長期評価手法でも断層長さが断層面の幅の4倍を超える場合には長さが4倍を超えないように区分した区間が連動するモデルを設定して地震規模を算出する手法が示されており、改訂レシピでもこの長期評価手法が参考とすべき知見として示されている。このように、債務者が評価した中央構造線断層帯の地震規模は、合理的なものであり、債権者らの主張には理由がない。

(b) 松田式がすべり量飽和の考え方に基づいていないこと

債務者は、地震規模の推定に用いる松田式がすべり量飽和の考え方に基づいていないため、その適用条件の制約のために概ね80km以下の断層に区分しているものである。債権者らは、長大断層の地震モーメントと震源断層のスケーリング則を示した Murotani et al. (2015)の知見を確立された知見ではないかのように主張するが、レシピでも採用されているとおり、債務者が、長大な断層においてはすべり量が飽和するという知見を、長大断層である中央構造線断層帯に係る地震動評価において用いることは至って合理的である。

b 不確かさの考慮について

(a) 松田式のばらつきについて

債権者らは、松田式にばらつきがあることを問題視するが、経験 式は、観測記録を基に、その平均的な値を求めるものであることか ら、経験式の基となる観測記録と経験式から算出した結果にばらつ きが生じるのは当然である。むしろ、松田式については、非常に誤 差が小さく、震源断層長さと地震規模の間に強い相関関係があるこ とを示している。また、そのようなばらつきは、基となるデータの 地域特性が反映されたものであるので、これをそのまま本件発電所 での地震動評価に用いるのは適切ではない。なお、債務者は、本件 発電所の地域特性を反映して、断層長さにつき、480km、130 km, 69km及び54kmの各ケースで評価することによって、マグニ チュードは7.7~8.5,地震モーメントでは8.71×10¹⁹ $N \cdot m \sim 8$. $4.7 \times 1.0^{20} N \cdot m$ と想定することで、約9. 7倍の ばらつきを考慮している。また、松田式は、震源断層長さから評価 すると観測記録よりも大きなマグニチュードを導く、保守的な値を 求める式であり、債務者は、震源断層長さから松田式を用いて中央 構造線断層帯のマグニチュードを求めているから、松田式の基とな ったデータのばらつきを考慮しても、債務者が想定する中央構造線 断層帯の地震規模が、債権者らが主張するような過小評価となるこ とはない。

(b) 断層長さの認識論的不確定性について

中央構造線断層帯は、長大な活断層として、非常に多くの研究者らによって調査が行われており、債務者自身も入念な調査を行い、その性状を詳細に把握してきた。また、中央構造線断層帯のように、過去に繰り返し活動している非常に成熟した断層においては、震源断層が地表断層として表れていると考えられている。債務者が中央構造線断層帯において設定する約480kmという断層長さは、そうした研究成果や調査の結果に係る最新の知見を踏まえ、最大規模を想定するとの観点で震源断層を設定したものであり、震源断層長さの設定において、地震規模を過小に評価するような不確かさは存在しない。したがって、地震発生前には地下の震源断層の長さは分からないので、松田式には地表地震断層の長さを当てはめざるを得ないとの債権者らの主張は誤りである。

c 中央構造線の長期評価との比較について

中央構造線の長期評価と比較して、そもそも「明らかに過小評価」 とする指摘も当たらないが、債務者と地震本部とで地震規模の評価が 多少異なる主な理由としては、設定しているすべり量が異なることな どにある。

中央構造線の長期評価における地震規模は、地表変位量(7m)が断層の平均すべり量と同じという仮定や、一部区間の断層の幅や平均すべり量が全長(約130km)にわたって同一であるという仮定のもと算出されたものであるところ、室谷ほか(2009)及び室谷ほか(2010)によれば、長大断層に限れば、地表最大変位量は平均すべり量の概ね

2~3倍であり、地表最大変位量は断層長さがほぼ100kmで約10 mに飽和するとされている。これらの知見に基づくと、地震本部の想定する断層の平均すべり量7mでは、地表最大変位量は14~21mとなり、堤・後藤(2006)が四国西部の中央構造線断層帯で確認したとする地表の変位量2~4mと整合しない。債務者はこうした点を踏まえ、敷地の強震動評価を行う観点から、適切な平均すべり量を設定し、地震規模を評価したものであり、債務者の評価したモーメントマグニチュードと中央構造線の長期評価のモーメントマグニチュードとを単純に比較するのは適切ではない。

(イ) 耐専式等距離減衰式の適用について

a 耐専式適用結果の排除について

債権者らは、債務者が54km,69km及び130kmの各ケースの鉛直モデルについて耐専式の適用を排除したのは恣意的であると主張する。しかし、480kmケースは鉛直モデル、北傾斜モデルともに耐専式が適用できる範囲にあるものの、130km,69km及び54kmの各ケースは、いずれも等価震源距離が耐専式の適用範囲を示す「極近距離」よりも短くなり、基本的には適用外の範囲にある。特に、各鉛直モデルは耐専式の検証に用いた観測記録がない範囲であり、適用にあたっては慎重な検討が必要である。そこで、耐専式の適用性の検証において、①評価対象となる断層の距離及び地震規模と基となるデータの範囲とを比較して適用性を吟味した上で、②その他距離減衰式及び断層モデルによる評価から導かれる地震動レベルとも対比して適用性を検討したところ、上記各鉛直モデルについては、①等価震源距離及び地震規模の観点からは、耐専式の本来の適用範囲からも外れており、さらには、②その他距離減衰式及び断層モデルによる評価から導かれる地震動レベルからも大きく乖離していることから、その他の距離減

衰式を採用することとしたものであり、排除が恣意的であるとの主張 は失当である。

b 不確かさの考慮について

(a) 耐専式のばらつきについて

債権者らは、耐専式の基となるデータにはばらつきが多く、このばらつきの幅を地震動評価の結果にも反映すべきであると主張するが、耐専式のばらつきは、ある観測地点における地震動に地域特性、すなわち、「震源特性」、地震波の「伝播特性」、地盤の「増幅特性」が反映されることにより生じるものである(つまり、データベースのばらつきは、各データが観測された地点の地域特性そのものである。)。本件敷地に係る地震動評価において反映すべきは当該敷地の地域特性であるのは当然であるところ、債権者らの主張は、これを無視して、他地点の地域特性を妥当性の検証を行うこともなく本件敷地に係る地震動評価に適用するよう求めるものであり、極めて不合理である。

(b) その他不確かさの考慮について

債務者は、応答スペクトルに基づく地震動評価では断層長さ及び断層傾斜角の不確かさを考慮するなどしているが、より詳細な不確かさについては、断層モデルを用いた手法による地震動評価において考慮した。そもそも、原子力発電所の地震動評価では、応答スペクトルに基づく地震動評価は少ないパラメータを用いる簡便な手法であることから、精緻な不確かさの考慮については断層モデルを用いた手法による地震動評価に反映することが予定されている。このことは、地震ガイドにおいて、断層モデルを用いた手法による地震動評価に係る不確かさの考慮に関する規定にのみ、不確実さの要因を偶然的不確実さや認識論的不確実さに分類・分析することを求

めていることからも明らかである。

もっとも、債務者は、応答スペクトルに基づく地震動評価の手法 に伴う不確かさについて、耐専式の適用性を慎重に検討する過程に おいて、耐専式以外の距離減衰式による評価結果及び断層モデルを 用いた手法に基づく地震動評価の結果と比較して、内陸補正を行わ なければ過大な結果になるケースであっても、あえて内陸補正を反 映せずに耐専式による評価を行うことで、十分に保守的な評価を行 っている。その結果、債務者が行った応答スペクトルに基づく地震 動評価において、十分なばらつきが反映されていることは、その評 価結果を示す応答スペクトルが、幅広く分布していることからも明 らかである。

(c) 南傾斜モデルを考慮しないことなどについて

債権者らは、耐専式の適用にあたり、断層の南傾斜の可能性を考慮する必要がある旨主張するが、債務者が南傾斜モデルを考慮しなかったのは、耐専式の適用において断層面の南傾斜を想定すると、断層面が本件敷地により近くなり、耐専式の適用範囲からさらに外れることになるからであって、合理性がある。

また、債権者らは、耐専式を用いた場合、パラメータとして用いる等価震源距離の影響で69kmケースで最大となり、130km及び480kmの各ケースがこれを下回ることを問題視するが、耐専式という手法に等価震源距離を用いることによる特性が存在することは公知の事実である。そこで、債務者は、等価震源距離の特性に伴う不確かさを考慮するために、54km、130km及び480kmの各ケースの評価に加えて69kmケースの評価を行い、その結果、保守的な結果が得られたものである。また、中央構造線断層帯に係る断層モデルを用いた手法による評価結果からは、54km、130km及び

480kmの各基本ケースからもたらされる地震動はほぼ同じであり、断層長さを変えてもより実像に近い地震動としては違いが生じないということが確認できているため、仮に耐専式の特性により、130km及び480kmの各ケースが69kmケースと比べると若干小さめの評価になっていたとしても、69kmケースの評価を代表させることで、適切に基準地震動を策定することができるのであり、債権者らの主張は理由がない。

イ 断層モデルを用いた地震動評価

- (ア) 基本震源モデルの設定について
 - a 改訂レシピについて

債権者らは、改訂レシピによれば、5.4 km及び1.3.0 kmの各ケースでは、Fujii and Matsu'ura(2000)のスケーリング則から導かれた応力降下量(3.1 MPa)が適用できる閾値(地震モーメント $1.8 \times 10^{20} \text{ N} \cdot \text{m}$)を下回るとして、これを用いる債務者の評価が不合理であると主張する。

しかしながら、改訂レシピにおいて、上記応力降下量を用いるにあたっての閾値が示されたものの、これはあくまで目安に過ぎない。地震の発生には地域性が存在することから、一律の数値でその適用性を判断するのではなく、対象とする断層に対して、個別に、長大断層に該当するか否か、つまり、すべり量が飽和する領域にある断層であるか否かという観点で評価すべきである。そして、中央構造線断層帯の場合には、断層幅(13km)に対して断層長さが十分に長く(例えば、54kmケースにおいても、断層長さは幅の4倍以上ある。)、長大断層に該当すると評価できるので、上記応力降下量を用いた評価を行うことが適切であると判断されるのであり、債務者が上記応力降下量を適用したのは合理的である。

b 長大断層に用いる手法について

(a) 仮説にすぎないとの主張について

債権者らは、壇ほか(2011)の手法の正確性が検証不可能であるなどと主張する。

しかし、壇ほか(2011)は壇ほか(2012)によって、長大断層の観測記録とも整合することが検証されている。また、藤堂ほか(2012)でも、壇ほか(2011)を用いて中央構造線断層帯の断層長さ360kmのモデルによる強震動評価を行い、その評価結果と司・翠川(1999)の距離減衰式による推定値及び2002年 Denali 地震の断層近傍の観測記録とを比較し、よく対応していることが確認されている。さらに、壇ほか(2016)は、1999年トルコ Kocaeli 地震を対象として検証を行い、壇ほか(2011)による長大横ずれ断層の評価手法の妥当性が示された旨述べている。債務者自身も、壇ほか(2011)を用いた中央構造線断層帯の地震動評価結果と上記地震や2008年四川地震の岩盤上の観測記録とを比較して整合的であることを確認しており、原子力規制委員会の審査でも確認を受けている。このとおり、壇ほか(2011)の妥当性については適切な検証が行われており、長大断層の地震動予測を正しく行うことができるのか検証が不可能であるとする債権者らの主張には理由がない。

(b) すべり量の飽和について

債権者らは、壇ほか(2011)では、震源断層の長さが約80kmを超えると平均すべり量はほぼ3mで一定という結論を導くことになるが、すべり量は、断層が連動しても変わらないという考え方と、長くなればなるほど大きくなるという考え方があり、中央構造線断層帯がどちらなのかは分からない旨主張する。しかし、長大断層の断層長さと地震規模とのスケーリング則については、段階的に変化す

るという知見が一般的であり、断層が長くなればすべり量も飽和することが指摘されており、内陸地殻内地震の場合、長さが100km程度を超えるような断層になると、地表の最大変位量が10m程度で飽和するというのが一般的に認識されている知見である(室谷ほか(2010))。壇ほか(2011)は上記知見等にも整合しており、これを債務者が採用したことは不合理ではない。

(c) 壇ほか(2011)が妥当であること

債権者らは、壇ほか(2011)では、震源断層幅を15kmと仮定したシミュレーションによって強震動予測に用いる平均動的応力降下量やアスペリティの応力降下量を求めているが、債務者による中央構造線断層帯の480kmケースの平均断層幅は12.2kmであり、これをそのまま適用するのは合理的ではないと主張する。

債務者は、壇ほか(2011)が震源断層幅を15kmと仮定して平均動的応力降下量、アスペリティ応力降下量を設定していることについて、幅約13kmの中央構造線断層帯に適用しても問題ないことを検証・確認しており、壇ほか(2011)が設定するデータを用いて評価を行うことは不合理ではない。具体的には、断層長さと断層幅の関係、短周期レベル、地震モーメント、すべり量等、壇ほか(2011)のスケーリング則の回帰に用いた実地震の断層パラメータと本件発電所の地震動評価で設定した断層パラメータの比較を行っており、設定したパラメータが回帰に用いたデータと概ね対応することを確認している。この点については、原子力規制委員会も確認している。

- c 480kmと130kmの各ケースへの入倉・三宅(2001)の適用可能性
 - (a) Fujii and Matsu' ura (2000)について

債務者は、Fujii and Matsu'ura (2000)は、いくつかの条件下で導出された値であり暫定値に過ぎないとして、当該手法を適用す

ることによる不確定性を十分に見込まなければ、原子力発電所の耐 震設計に適用できない旨主張する。

Fujii and Matsu'ura(2000)に基づく応力降下量の設定が、レシピでは暫定値と記載されているとしても、この設定を用いることにより求まるアスペリティの応力降下量が、内陸の長大な横ずれ断層に関する既往の調査・研究成果とおおよそ対応するのは事実である(だからこそ当該手法がレシピに採用されているのである。)。また、債務者は、そういったスケーリング則の不確定性を踏まえ、基本的には壇ほか(2011)を用いて震源モデルを構築するものの、異なる観点から震源モデルを構築するために、Fujii and Matsu'ura(2000)を採用した。したがって、この目的に鑑みれば、Fujii and Matsu'ura(2000)自体の不確定性をさらに考慮する必要はなく、ましてや原子力発電所の耐震設計に適用できないという主張は誤りである。

(b) 入倉・三宅(2001)の適用可能性について

債権者らは、壇ほか(2011)を適用すると、レシピが入倉・三宅(2001)を適用する上限とする地震モーメントの半分程度しか算出されず、レシピよりも大幅に過小評価となるなどと主張する。

しかし、地震規模のスケーリング則は、断層の破壊に応じて変化することが知られている。つまり地震規模が、幅・長さ・すべり量に比例する領域(地震モーメントが 7. 5×10^{18} N・m以下)、長さ・すべり量に比例する領域(同 7. 5×10^{18} N・m以上かつ 1. 8×10^{20} N・m以下)、長さに比例する領域(同 1. 8×10^{20} N・m以上)の 3 ステージが知られているところ、債務者が 壇ほか(2011)に基づき算出した地震モーメント 5. 3×10^{20} N・mを上記知見に照らせば、地震規模が長さに比例する Murotani et

al. (2015)の領域に該当しており、地震規模が長さ・すべり量に比例する領域に適用される入倉・三宅(2001)と比較して過小評価と主張することは意味を持たない。Murotani et al. (2015)で評価する領域においては、同スケーリング則と壇ほか(2011)のスケーリング則はよく対応しており、債務者が壇ほか(2011)を採用して地震規模の評価を行ったことが妥当であることを示している。

d 5 4 kmケースでの入倉・三宅(2001)による過小評価

(a) 過小評価との主張について

債権者らは、島崎元委員長代理が、入倉・三宅(2001)を用いて地震モーメントを求めると過小評価となる場合があることを指摘しているとして、債務者が入倉・三宅(2001)を適用して求めた54kmケースの地震動評価が過小評価であるおそれがある旨を主張する。

しかし、島崎元委員長代理の指摘については、関西電力株式会社 (以下「関西電力」という。)大飯発電所(以下「大飯発電所」という。)の地震動評価について同様の指摘を受けた原子力規制庁が 検証を行った結果、原子力規制委員会が基準地震動を見直す必要は ないと結論付けているのであるから、島崎元委員長代理の指摘をもって54kmケースの地震動評価が過小であるとする債権者らの主張 は適切ではない。また、そもそも島崎元委員長代理が入倉・三宅 (2001)を用いた場合に地震モーメントが過小評価となると主張しているのは、断層傾斜角が「垂直な断層や垂直に近い断層」を対象とした場合であるとされているところ、債務者は、入倉・三宅(2001)を適用する54kmケースについて、断層傾斜角を北傾斜30度とする不確かさを考慮していることから、島崎元委員長代理の指摘は、本件原子炉の地震動評価には当たらない(54kmケースの鉛直モデルでは地震モーメントが2.74×10¹⁹N・mであるのに対し、

北傾斜 30 度のモデルでは約 4 倍の 1.10×10^{20} N・mとなっている。)。さらに、鉛直モデルについても、入倉・三宅(2001) 以外にも、壇ほか(2011) を適用して地震モーメントを算出し、入倉・三宅(2001) で求まる地震モーメントよりも保守的な値を設定して地震動評価を行っており、過小評価という指摘は当たらない。

(b) 松田式等他の式も用いるべき旨の主張について

債権者らは、平成20年4月11日改訂の強震動予測手法から、 地震規模(地震モーメント)を求める手法として、従来から記載されていた入倉・三宅(2001)に加えて、松田式を用いる手法が記載されることとなり、中央構造線の長期評価でも松田式を用いる手法が採用されているとして、これは地震本部が入倉・三宅(2001)よりも松田式を用いる手法が妥当だと判断したものである旨を主張する。

しかしながら、その経緯については、平成21年7月21日に公表された「全国地震動予測地図」の技術報告書において、レシピは、断層帯を個別に取り上げて、詳細に強震動評価を行うことを目的としてまとめられてきた一方で、多くの断層帯を対象として一括して計算するような場合や、対象とする断層帯における詳細な情報に乏しい場合であっても強震動の時刻歴を計算できるようにするため、従来のレシピに基づきながらも一部の断層パラメータの設定を簡便化した方法がレシピに追加されたものである旨説明されている。この説明等からすれば、入倉・三宅(2001)を用いた債務者の評価を非難する債権者らの主張は、レシピにおける松田式の位置付けを理解しないものであり、失当である。

(イ) 不確かさの考慮について

a スケーリング則のばらつきについて

債権者らは、ばらつきの定量的評価は十分可能であるにもかかわら

ず、債務者がこの評価を怠っているなどと主張する。

しかし、経験式とその基となるデータ(さまざまな地点や地震に関 する観測値)のばらつきが生じるのは、個々の観測記録の地域特性が 反映されているからである。そして、債務者は、スケーリング則を示 す経験式にこのようなばらつきがあることを当然認識しており、だか らこそ、複数の経験式を用い、本件発電所の地震動評価において考慮 すべき地域特性を踏まえ、様々な不確かさを考慮した評価を行ってい る。例えば、債権者らが指摘する短周期レベルでいえば、壇ほか (2011)を用いる場合で、5.4 kmの基本ケースでは1、 $5.6 \times 1.0^{19} \text{N}$ ・ m/s^2 であるところ、480kmの基本ケースでは 4.54×10^{19} $N \cdot m/s^2$ (54kmの基本ケースの約2.9倍)となり、同じく48 Okmケースのうち応力降下量の不確かさを考慮したモデルでは7.4 $5 \times 10^{19} \, \text{N} \cdot \text{m/s}^2$ (同約4. 7倍) となっており、十分に大きな ばらつきを考慮しており、債権者らの主張は当たらない。また、債権 者らは、債務者が個々の観測記録の地域特性が具体的にどのようなも のかを明らかにしていないとして論難するが、経験式に則って地震モ ーメントを求めることにより平均的な値を得ることができるのである から、その際に、債務者が考慮すべき地域特性を加味することにより、 必要なばらつきを考慮することができるのであり、個々の観測記録の 地域特性を明らかにする必要はない。

b グリーン関数法のばらつき等について

債権者らは、債務者が中央構造線断層帯の評価に用いたグリーン関数 (要素地震)が適切ではないとし、グリーン関数のばらつきを評価すべきであると主張する。

しかし、まず、グリーン関数の適切性について、債務者は、海洋プレート内地震を要素地震として採用するにあたり、適切に媒質や応力

降下量の補正を行っており何ら問題はなく、過小評価となるおそれもない。また、債務者はグリーン関数法による評価を行うに先立って、経験的グリーン関数法と統計的グリーン関数法とによる評価をそれぞれ実施して両者の比較を行っている。その結果、原子炉容器、蒸気発生器等の主要な設備の固有周期と重なる周期 0. 1 秒付近以下に着目すると経験的グリーン関数法による評価の方が厳しい評価となったため、債務者は経験的グリーン関数法を評価に用いることとしたものである。債権者らは、南北方向の 0. 3 秒以上では経験的グリーン関数法では過小評価だと指摘するが、債務者の評価は、重要施設の耐震安全性を確保するという観点から妥当な評価である。さらに、債権者らが指摘する南北方向の周期 0. 3 秒以上については、基準地震動 S s - 1 によってカバーされており、耐震安全性は担保されているのであり、過小評価との指摘は全く当たらない。

c 不確かさの考慮が不十分との主張について

債権者らは、債務者による不確かさの考慮が十分ではないかのよう に指摘するが、債務者は、次のとおり、多岐にわたる不確かさを考慮 しており、債権者らの主張は誤りである。

すなわち、断層モデルを用いた地震動評価において、断層の性状に 関する不確かさ、スケーリング則に関する不確かさ、地震動評価手法 に関する不確かさといった各種の不確かさについて、不確かさの要因 を分類するとともに、適切に分析を行った上で、これらの不確かさを 必要に応じて組み合わせて考慮している。例えば、中央構造線断層帯 の性状に関する不確かさに関しては、そもそも地震発生時の環境に左 右されて定まらない性状や、調査、検討を尽くしても平均的なモデル を特定しきれない性状があること、一定の性状を評価できたとしても この評価結果に不確実さを伴っているかもしれないことを勘案してい る。このうち、地震発生時の環境に左右される偶然的な不確かさ(破壊開始点等)及び事前に平均的なモデルを特定することが困難な不確かさ(アスペリティ深さ、断層長さ(連動)等)については、480 km,130 km及び54 kmの各基本ケースに、アスペリティ深さの不確かさとして保守的に断層上端にアスペリティを配置し、破壊開始点の不確かさとして地震動評価への影響が大きくなるよう断層東下端、中央下端及び西下端の3か所に設定(ただし、特に厳しい評価となる応力降下量に係る不確かさを考慮するケースでは5か所に設定)することで適切に考慮している。また、一定の性状を評価できたとしてもこの評価結果に不確実さを伴う可能性を勘案して、事前の調査、経験式等によって平均的なモデルを特定することが可能な不確かさ、すなわち、①応力降下量、②地質境界断層の傾斜角(北傾斜)、③断層傾斜角(南傾斜)、④破壊伝播速度及び⑤アスペリティの平面位置については、基本震源モデルに重畳させる不確かさ、換言すれば独立した不確かさとして考慮している。

- (2) 敷地ごとに震源を特定して策定する地震動(プレート間地震)について (債権者らの主張)
 - ア 南海トラフから琉球海溝までの連動を想定すべきこと

債務者は、南海トラフの巨大地震(陸側ケース)を検討用地震として選定し、基本震源モデルとしている。しかし、そもそも南海トラフの巨大地震を検討用地震として選定することの妥当性をめぐり、確率論的なモデルの構築も、定量的な評価も、安全目標との照合も、何も行っていない。その点を措くとしても、南海トラフの巨大地震は、従前の既往地震を基にした想定よりは保守的になったものの、南海トラフから琉球海溝までが連動することを想定されていない点で南海トラフ地震として考え得る科学的に最大規模の地震というわけではないから、原子力発電所の耐震安全性を確

保する上で十分な想定とはいえない。南海トラフから琉球海溝連動による超巨大地震は、津波ガイドにおいて、最大Mw9.6程度の地震として参照すべき波源とされている南海トラフから南西諸島海溝よりも若干小さいものであるが、設置許可基準規則解釈別記2第4条5項二③でも、プレート間地震では世界で起きた大規模な地震を踏まえて震源領域の設定を行うべきことが規定され、最大潜在マグニチュードの評価はSSG-9の要請でもあることからすれば、南海トラフ巨大地震の発生が迫っており、その震源域に含まれる本件原子炉において、複数の専門家から指摘され科学的に十分考えられるこの超巨大地震による地震動を想定しなくてよい理由はない。

イ 応答スペクトルに基づく地震動評価

(ア) 地震規模Mw8.3は過小であること

債務者は、内閣府検討会において、南海トラフの巨大地震の検討に用いる経験的手法のパラメータがMw8.3と設定されたことから、南海トラフの巨大地震はM9.0であっても地震動評価に用いる地震規模はMw8.3でよいとしている。しかし、この想定は原子力発電所の基準地震動評価としては明らかに誤りである。

なぜ内閣府検討会が、南海トラフの巨大地震の地震規模と地震動の関係について、東北地方太平洋沖地震と同じ関係が当てはまると考えたのか、その理論的根拠は定かではない。しかし、内閣府検討会は、基本的には一般防災のために、「東北地方太平洋沖地震と同様な地震が、もし南海トラフで起きた場合」の震度分布等を検討しているに過ぎず、原子力発電所のように一たび重大事故が起きれば極めて深刻な被害が広範囲、長期間に及ぶ建造物の耐震安全性を検討しているわけではない。より安全性に配慮する必要のある個別施設については、個別の設計基準等に基づいた地震・津波の推計が改めて必要であることは、内閣府検討会も認

めている。

また、東北電力の資料でも、「東北地方太平洋沖地震の地震観測記録は、Mw8.3の距離減衰式とよく一致している。」、「M9程度の巨大地震だが、地震動としては、M8前半で頭打ちの可能性が示唆される。」と記載されているが、この東北地方太平洋沖地震の強震動記録をもとに、南海トラフM9クラスの地震もそうなるというためには、相応の理論的根拠を示す必要がある。仮に東北地方太平洋沖地震がMw8.3相当の地震動しか発生させていないというのが事実であるとするならば、それが東北地方の地域性や偶然的不確定性等によるものでもなく、南海トラフにおけるM9程度の地震にも、必然的に、ないしそれに近い確率で伴う性質のものであることを論証しなければ、債務者の主張の正当性は裏付けられない。しかし、債務者はそのような論証を行っていない。

(イ) 耐専式のばらつき等について

耐専式の元データにはM7.0以下の地震しか含まれていないから、Mw9クラスのケースに耐専式を適用するには、その適用可能性が検証されなければならない。仮に耐専式が使えるとしても、本件敷地の位置は震源域の北西端にある関係で、等価震源距離が131kmないし126kmと、かなり大きく評価されてしまっており、震源域の中に本件敷地が含まれているにもかかわらず地震動が過小評価されているように見受けられる。この点を補うためにも、断層最短距離によって地震動を評価できる距離減衰式も適用すべきであるが、債務者にはそのような慎重さが欠けている。

また、耐専式にはプレート間地震でも標準偏差で倍半分程度のばらつきがある。Mw9.0以上の巨大地震は世界的にも稀であるが、これらのデータを含めて検討し、この点の不確定性を考慮した上で余裕をもっ

た応答スペクトルにしなければならない。距離減衰式におけるばらつき や認識論的不確定性の考慮は、IAEAの基準(SSG-9)にも記載 されている。しかし、債務者はこの点の検討も怠っている。

- ウ 断層モデルを用いた地震動評価
 - (ア) ばらつき、不確かの考慮の不十分さ
 - a 断層モデルに基づく手法については、「各種の不確かさ(震源断層の長さ、地震発生層の上端深さ・下端深さ、断層傾斜角、アスペリティの位置・大きさ、応力降下量、破壊開始点等の不確かさ、並びにそれらに係る考え方及び解釈の違いによる不確かさ)」を考慮すべきことが、設置許可基準規則解釈別記2第4条5項二⑤で定められている。ところが、債務者は、南海トラフの巨大地震につき強震動生成域を敷地近傍に配置するケース(陸側ケース)のみを「不確かさの考慮」としただけで、その他のケースを一切考慮していない。まるで上記断層モデルを考慮すればそれ以外のケースを考慮する必要がないと言わんばかりであるが、同モデルでは科学的に最大のケースを考慮したとはいえないのであり、強震動生成域の位置を動かしただけで設置許可基準規則が要請する不確かさの考慮を行ったとはいえない。
 - b 債務者は、断層モデルを用いた手法でハイブリッド合成法を使用しているが、地震ガイドでは、「伝播特性」「サイト特性」における各種の不確かさの分析を適切に行うことを求めており、ハイブリッド合成法の誤差を考慮しないのは地震ガイドに反する。M9クラス地震の観測例は少ないとはいえ、ハイブリッド合成法のばらつきについての定量的評価は不可能ではない。特に既往の研究によって理論的手法のばらつきは標準偏差で最大2倍程度の可能性が指摘されている以上、無視することは到底許されない
 - (イ) 強震動パルス生成域モデルの考慮が必要であること

一辺が数十㎞程度の強震動生成域では、最大加速度に大きな影響を与 える時間幅1~2秒程度の強震動パルスを再現するには、サイズが大き 過ぎる。港湾航空技術研究所のチームリーダーである野津厚(以下「野 津チームリーダー」という。)らは、京都大学名誉教授・入倉考次郎 (以下「入倉名誉教授」という。) らとともに、東北地方太平洋沖地震 等で実際に観測されている強震動パルスを説明するためには強震動生成 域内部によりコンパクトな領域を考える必要があるとして、「強震動パ ルス生成域」(以下「SPGA」という。)という概念を提唱している。 野津チームリーダーらは、東北地方太平洋沖地震を対象として、一辺が 数㎞程度の9つのSPGAを設定した震源モデルを作成し,強震動シミ ュレーションを実施した結果,各地で実際に観測された強震動,特に工 学上重要性の高い0.2-2Hzの帯域の速度波形(強震動パルス)を精 度良く再現できることを示している。野津チームリーダーによると,東 北地方太平洋沖地震では強いSPGAが仙台市から見ても150㎞も沖 合に配置されていたため、最悪の事態こそ免れたものの、現代の地震学 では、強いSPGAの破壊が陸域の近傍で生じなかった理由を説明でき ない。したがって、原子力発電所のように、一旦事故が起これば国民生 活全般を脅かしかねない重要施設の耐震性の検討のために、大規模なプ レート境界地震を対象として基準地震動を策定する場合においては、強 いSPGAの破壊が対象施設の近傍で生じるような条件を設定すること が必要である。

エ 揺れの継続時間について

債務者は、揺れの継続時間を算定するに当たり、耐専式にM8.5を当てはめ、109.7秒という継続時間しか想定していないようである。しかし、東北地方太平洋沖地震の際には主たる破壊の継続時間は3分程度続いたのであるから、東北地方太平洋沖地震と同様の地震が南海トラフで発

生しただけで、揺れの継続時間は債務者の想定を超える可能性が高い。特に琉球海溝まで連動してMw9.6程度の地震が発生する場合、債務者が想定している揺れの継続時間(109.7秒)を2~3倍超過する危険があるから、債務者の揺れの継続時間の想定は過小である。

オ 南海トラフの巨大地震以外の事象について

(ア) 地震による他の事象の誘発について

M9クラスの南海トラフの巨大地震が誘発し本件原子炉を危機的状態に陥れる可能性がある事象は、甚大な被害により周辺からの支援が期待できない、原子力発電所作業員の離脱が続出する、海洋プレート内地震や火山噴火を誘発するなどいくらでも考えられ、とても全てを列挙できないほどである。しかし、近い将来の発生が懸念されるM9の震源域内で原子炉を稼働しようという原子炉設置者であれば、こういった事象は本来、全て列挙した上で、火山灰と地震動との重畳による被害の可能性など、一つ一つについて慎重な検討と十分な対策が練られているべきである。しかし債務者がそのような検討等を行った様子はない。

(イ) 繰り返し地震について

債務者は、債務者の想定によっても弾性設計用地震動Sd-1を若干超える周期帯があると認めているところ、このことからすれば、南海トラフ地震により本件発電所を襲う地震動が債務者の想定の範囲内に収まるとしても、同地震によって塑性変形を許してしまう施設があるということになる。例えば、本件発電所の蒸気発生器伝熱管の基準地震動Ssによる1次応力(膜応力+曲げ応力)の発生値は440MPaであり、この値は基準地震動Ssに関する評価基準値481MPaを辛うじて満足しているが、弾性設計用評価基準値263MPaを約1.7倍上回っているのであり、基準地震動Ssないしそれ未満の揺れに襲われた場合でも、弾性範囲を超えて塑性変形が生じている可能性がある。そこに再度基準

地震動あるいはそれ未満でも激しい地震動に見舞われれば、その健全性が維持出来ず、周辺公衆に放射線被曝を与える事故につながるおそれがある。南海トラフ地震については、1854年安政南海地震(M8.4)がその40時間後に海洋プレート内地震である豊予海峡地震(M7.4)を誘発したことが知られており、特に本件発電所については高い確率で南海トラフ地震とプレート内地震に襲われる可能性が指摘されているのであるから、本件発電所においてプレート間地震と海洋プレート内地震とによる繰り返し起こる強い揺れを想定しなくてもよい理由はない。さらに、南海トラフの巨大地震が本件敷地近傍において内陸地殻内地震を誘発させることも、経験的に十分あり得ることとして想定すべきである。

(債務者の主張)

ア 南海トラフから琉球海溝までの連動について

債務者が想定するプレート間地震の地震動評価は、東北地方太平洋沖地震等の知見に基づいて想定される最大級の強震断層モデルを採用している。すなわち、内閣府検討会は、東北地方太平洋沖地震を契機として、南海トラフの巨大地震を対象として、これまでの科学的知見に基づき想定すべき最大クラスの対象地震の設定方針を検討することを目的として設立されたものであり、その推計結果に関しては、「決して、南海トラフ沿いにおいて次に起こる地震・津波を予測して検討したものではない」、「現在の科学的知見の下で、今回推計し設定する最大クラスの地震・津波の発生確率、そしてその発生時期の予測をすることは不可能に近い」とされているのである。南海トラフの巨大地震については、「最近のMw8クラスの地震及び2011年東北地方太平洋沖地震の解析結果を基に、海溝型地震の強震断層モデルにおいて特に強い地震波を発生させる強震動生成域の面積とそのすべり量等に関する特徴、平均応力降下量等を調査し活用した」ものであり、「強震断層モデルについては、巨大地震の中でも最大級のものであ

ることが確認され」ているところであり、南海トラフで発生する地震に係る最新の検討状況を踏まえても、最大クラスの地震を想定するためのモデルとして妥当である。

なお、琉球海溝は南海トラフよりも長いため、琉球海溝を含めた震源断層の中心はサイトから遠くなるから、地震規模が大きくなってもその影響は限定的であることは自明である。

イ 応答スペクトルに基づく地震動評価

(ア) 地震規模Mw8. 3が妥当であること

債権者らは、内閣府検討会において、南海トラフの巨大地震の検討に用いる経験的手法のパラメータがMw8.3と設定されたことから、M9.0でも地震動評価上はMw8.3でよいとするのは誤りと主張する。しかし、内閣府検討会は、「2011年東北地方太平洋沖地震において、経験的手法である距離減衰式から求められる、地震規模であるパラメータMwは8.2~8.3程度であり、すべり量や応力降下量など断層運動から求められる地震の規模Mw9.0と比べると相当小さな値となっている」こと、「中央防災会議(2003)の東海・東南海・南海地震に関する検討においても同様の関係が見られ、東海・東南海・南海地震の距離減衰式による震度分布の推計で用いたパラメータMwは8.0である」ことを踏まえて、Mw8.3を導き出しているのであり、債務者のパラメータの設定は適切である。

(イ) 耐専式の適用可能性に関する主張等について

債権者らは、Mw9.0クラスの地震に耐専式を当てはめることができるか疑問であるなどと主張する。しかし、そもそも耐専式は、「M=8.5までの地震の地震動評価に供するようにしている」とされているところ、債務者は、南海トラフの巨大地震をめぐる内閣府検討会の知見を参照して、地震規模をMw8.3として地震動評価を行っているもの

であり、耐専式を適用できないとする債権者らの主張は失当である。さらに、耐専式は、①解放基盤表面の地震動として評価できること、②水平方向及び鉛直方向の地震動が評価できること、③震源の広がりを考慮できること、④敷地における地震観測記録を用いて地域特性等が考慮できるのに対し、断層最短距離を用いる距離減衰式では必ずしも上記①ないし④の全てを考慮することができるものでないことから、債務者は耐専式を用いるのが合理的と判断したものであるし、断層モデルを用いた手法による評価を行って、地震動評価の精度向上を図っているから、債務者の想定は合理的である。

また、債権者らは、耐専式には倍半分程度のばらつきがあるため、このような不確定性を考慮した上で余裕を持った応答スペクトルにしなければならないと主張するが、不確かさの考慮については、南海トラフの巨大地震自体が、東北地方太平洋沖地震を踏まえたあらゆる可能性を含めた、最大クラスの地震・津波を想定したものであることから、距離減衰式による評価を行うにあたり、改めて二重三重に不確かさを考慮する必要はない。

- ウ 断層モデルを用いた地震動評価
 - (ア) ばらつき、不確かさの考慮について
 - a 債権者らは、南海トラフの巨大地震の断層モデルに強震動生成域を 敷地近傍に配置するケース(陸側ケース)のみを「不確かさの考慮」 としただけであり、設置許可基準規則が要請する不確かさの考慮を行 ったとはいえない旨を主張する。

しかし、債務者は、プレート間地震の評価にあたって、あらゆる可能性を考慮した最大クラスの巨大な地震として想定された南海トラフの巨大地震のうち、敷地への影響が最も大きい陸側ケースを基本震源モデルとして評価を行っており、このモデル自体で地震規模及び震源

要素の不確かさを考慮できているものと考えられる。債務者は、さらに安全側の評価となるよう十分に不確かさを考慮して、敷地に最も近い日向灘域の強震動生成域を敷地の直下に追加配置した断層モデルによる評価も行っていることから、不確かさの考慮が不十分とする債権者らの指摘は当たらない。

b 債権者らは、ハイブリッド合成法の誤差を考慮しないのは地震ガイ ドに反する旨を主張する。

しかし、そもそも本件発電所では、プレート間地震の地震動評価を行うにあたり、南海トラフの巨大地震を採用しており、十分不確かさを考慮しているのである。そして、その評価結果は、基準地震動Ssー1を十分に下回るものであり、ハイブリッド合成法の適否が基準地震動Ssの適正さを左右するものではない。なお、地震ガイドにおいては、「必要に応じて不確かさを組み合わせる」と記述されているものであり、ハイブリッド合成法の不確かさを考慮する必要はないと判断されたものである。

(イ) SPGAモデルについて

債権者らは、南海トラフ地震についても野津チームリーダーらの提唱に係るSPGAが本件発電所直下ないし近傍にあることを想定しなければならない旨を主張する。

しかし、SPGAモデルについては、主に1.0秒~5.0秒の周期帯(0.2~1Hzの周波数帯域)における強震動の特性に着目した検討であり、この帯域ではカバーできないような工学上重要な施設も存在するが、同研究の主眼は上記の帯域にあるとされている。一方、原子力施設における主要な設備の固有周期は0.1秒以下であり、野津チームリーダーらが対象とする周期帯とは異なることから、原子力施設に想定する地震動評価として想定しなければならない必然性はない。

また、海溝型の地震(プレート間地震及び海洋プレート内地震)において、太平洋プレートとフィリピン海プレートとでは、プレートの形成年代、厚さ、形状等に起因して、発生する地震動の強さが異なる(太平洋プレートの方が大きい)と考えられることから、東北地方太平洋沖地震の記録から特定されたSPGAを、プレートの異なる本件敷地周辺地域で発生する地震にそのまま想定するのは合理的とはいえない。

さらに、内閣府検討会は、強震動生成域を配置するにあたり、深部低周波地震の発生領域を考慮して、強震動生成域を「可能性がある範囲で最も陸域側(プレート境界面の深い側)の場所に設定したもの」として陸側ケースを設定しているところ、内閣府検討会は、深部低周波地震の深い側の境界付近にあたる本件敷地直下において、特に強い地震を発生させるような断層すべりが起きる可能性は低いと判断して強震動生成域を配置していない。このように、本件敷地直下には、本来、強震動生成域は想定されないことから、当然ながら、「強震動生成領域の中で局所的に応力降下量の高い」とされるSPGAは想定されるものではない。債務者による本件発電所の地震動評価は、敷地直下には強震動生成域が想定されるものではないものの、不確かさを考慮することとして、敷地直下に強震動生成域を配置した検討を行ったものであるが、これに対してさらに不確かさを考慮して、強震動生成域に強度の高い破壊(SPGA)を設定した評価を行うのは、極めて可能性の低い現象で、現実的な想定とはいえず、合理的ではない。

エ 揺れの継続時間について

債権者らは、南海トラフの、東海、東南海、南海地震の3つの地震セグメントが数分から数十分の時間差で順番にズレ動く時間差連動の検討が必要である旨主張する。

しかし、地震規模の大小と地震動の大小は必ずしも一致せず、南海トラ

フや琉球海溝沿いの地震では規模が大きくなっても距離が遠くなるため, 影響は限定的である。債権者らは,時間差連動の検討の必要性を述べるが, 3つの地震セグメントが,仮に3分割されて時間差連動した場合にも,東 海,東南海セグメントは敷地から離れていることから,これらのセグメン トから敷地にもたらされる地震動はかなり小さいものと推察される。した がって,仮に3つのセグメントが時間差で動いて長時間の揺れをもたらし たとしても,南海セグメントによる影響が最も大きく,大きな影響が生じ ることはない。

オ 基準地震動以外の影響について

債権者らは、南海トラフの巨大地震が発生した場合、サイト内外の被害 状況により事故対応が困難になるおそれがあり、余震、他の地震又は火山 活動を誘発するおそれがあるとも主張する。

しかし、債務者は、南海トラフの巨大地震に対する耐震安全性を確保しており、同地震によって事故対応が必要となることはないし、仮に中央構造線断層帯等による地震が誘発されたとしても、施設の安全性が損なわれないことも確認している。さらには、火山が噴火する可能性にも言及しているが、債権者らの単なる憶測にすぎない。もっとも、仮に火山活動が誘発されたとしても、本件原子炉の安全性が損なわれないことについては、後記9債務者の主張欄記載のとおりである。

また、債権者らは、南海トラフの巨大地震によって安全上重要な施設が塑性変形してしまう可能性は否定できないと主張するが、南海トラフの巨大地震による地震動の応答スペクトルは、やや長周期側で弾性設計用地震動Sd-1を若干超える周期帯があるものの、大半の安全上重要な施設の固有周期となる短周期側では、大きくSd-1を下回っている。本件原子炉は、弾性設計用地震動Sdに対して施設全体として概ね弾性範囲に留まることとしているため、短周期側の地震動レベルが十分に小さいことを踏

まえると、本件原子炉の安全上重要な施設については、南海トラフの巨大 地震による地震動に対して弾性範囲内で挙動し(地震力によって一時的に 変形しても、地震力を取り除くと元どおりになる。)、塑性変形(弾性範 囲を超えて元に戻らなくなる変形)に至ることはない。

さらに、債権者らは、「地震と火山活動が同時期に発生することは通常 考えられる」とも主張するが、債務者は、自然現象などにより本件原子炉 に対して加わる様々な力(荷重)を適切に組み合わせて、施設の強度を確 保している。

(3) 敷地ごとに震源を特定して策定する地震動(海洋プレート内地震) について

(債権者らの主張)

ア 最大マグニチュード8.0を想定すべきこと

そもそも、債務者が1649年安芸・伊予の地震を検討用地震として採用したこと自体が、その妥当性をめぐる確率論的なモデルの構築、定量的な評価、安全目標の照合のいずれも経ていない点で相当でない。また、本件原子炉施設がある安芸灘~伊予灘~豊後水道は、M7前後の海洋プレート内地震が、最近400年間で6回という、かなり高い頻度で発生してきた地域でもあり、地震本部の平成16年2月27日付け「日向灘および南西諸島海溝周辺の地震活動の長期評価について」(以下「日向灘長期評価」という。)によると、安芸灘~伊予灘~豊後水道のどこかで、M6.7~M7.4の規模のプレート内地震が、今後30年以内に40%程度の確率で発生するとされている。そうすると、本件原子炉の耐震設計としてM7.4の直下地震を想定したのでは、明らかな過小評価である。そして、地震本部の「全国地震動予測地図2014年版~全国の地震動ハザードを概観して~付録—1」(以下「2014予測地図」という。)によると、安芸灘~伊予灘~豊後水道の領域における、プレート内地震の最大マグニチュ

ードは8.0であり、また、地震本部が作成した資料からすれば、フィリピン海プレートにおいてM8.0以上のプレート内地震は2000年に1回程度発生するとみられる。地震本部の長期評価は我が国の地震予測でもっとも権威があるものであることからすれば、これを否定してより小規模な地震を基本ケースとすることは、認められるべきではない。また、設置許可基準規則解釈別記2第4条5項二③では、海洋プレート内地震に関しても、国内のみならず海外で起きた大規模な地震を踏まえるべきことが規定されているところ、国内における観測史上最大のプレート内地震(ただし海洋プレート内地震は20世紀以降の記録しかない。)は1994年の北海道東方沖地震(M8.2)であり、1911年奄美大島近海の地震(M8.0)についても海洋プレート内地震とする説が従前からの通説である。

さらに、広島県、広島市ともに、安芸灘〜伊予灘〜豊後水道の領域における海洋プレート内地震については、日向灘長期評価に記載された最大のM7.4を元に地震被害の想定を行っている。債務者の想定であるM7.0又は7.2というのは、広島県及び広島市が一般防災目的で行っている地震規模想定をも下回る。かかる債務者の想定は、社会通念上許容されるものではない。

以上からすると、本件原子炉の基準地震動策定上、海洋プレート内地震のマグニチュードは、少なくとも8.0を基本ケースとすべきである。

イ 耐専式の適用について

債務者は、海洋プレート内地震につき、応答スペクトルに基づく地震動評価として、耐専式を用いているようである。しかし、そもそも耐専式はM7.0までの地震を元データとした経験式であり、M7.4ないし8.0といった規模の海洋プレート内地震への適用妥当性は確認されていないと思われる。仮に適用できるとしても、債務者が補正係数に用いた本件敷

地周辺の10の海洋プレート内地震は、耐専式の適用下限であるM5.5 を下回る規模の地震が半数を占めている上、深さの上限である60kmを超える地震も3つあり、補正係数の妥当性も疑われる。さらに、これら補正係数を導くための元データの平均から標準偏差で倍半分以上のばらつきが認められ、このばらつきを考慮しなくてもよい理由はない。

(債務者の主張)

ア M8.0を想定すべきとする債権者らの主張について

債権者らは、少なくともM8.0を基本ケースとすべきである旨を主張 するが、次に述べるとおり、同主張は合理的根拠に乏しい。

まず、地震本部が2014年予測地図で設定しているM8.0という値はあくまで暫定的な位置づけであると解されるところ、その値の根拠は、

「1911.06.15 奄美大島近海と同程度の地震が発生し得ると仮定」されたものである。この地震は、地震本部の長期評価においては、被害の大きさや津波がそれほど高くなかったことなどから、やや深いプレート内地震と推測されているのであるが、最新の研究ではプレート間地震と評価されているものであるから、本件敷地周辺の海洋プレート内地震に想定されるものではない。仮に海洋プレート内地震であった場合でも、琉球海溝の北部と南部では発震機構やテクトニクスが異なっているとともに、琉球海溝のプレートと本件敷地周辺(西南日本)のプレートは生成年代が異なっており、プレートの厚さに差が見られる(年代の新しい本件敷地周辺のプレートは、年代の古い琉球海溝付近と比べて薄く、想定される地震規模も小さい)ことから、琉球海溝で発生する地震は本件敷地周辺に想定されるものではない。この評価については、原子力規制委員会の審査で承認されている。

また, 地震本部は, プレート内に80km×80kmの水平の矩形断層面を 想定しているのであるが, 敷地周辺のフィリピン海プレートの厚さは30 ~35㎞程度であることから、九州下方に斜めに沈み込むフィリピン海プレートに対して、このように大きな水平矩形断層面を設定することは不可能であるから、地震本部による検討は、仮想の震源モデルに基づく、まさに確率論的な観点に立った地震動評価というべきである。この点、債務者は、本件発電所周辺地域における地震の発生状況、地質・地質構造等に係る詳細な評価を行い、地域特性を十分に踏まえた上で、海洋プレート内地震として、1649年安芸・伊予の地震(M6.9)を検討用地震として選定し、基本震源モデルの設定にあたっては、地震発生位置と規模の不確かさをあらかじめ織り込み、敷地下方に既往最大規模(1854年伊予西部地震のM7.0)の地震を仮定するなどして、決定論的な観点から地震動評価を行っている。

イ 耐専式の適用について

債権者らは、耐専式の適用可能性やばらつきの考慮等を問題にする。しかし、耐専式はM8.5まで適用可能であるし、また、補正係数も敷地周辺における比較的規模の大きい観測記録があることから、これら観測記録を基に適切に算出している。そして、債務者が海洋プレート内地震の地震動評価にあたり、1649年安芸・伊予の地震を再現したモデルをM7.0に較正したケース、敷地の真下に想定する地震規模をM7.2としたケース、アスペリティの位置を断層上端に配置したケース、敷地東方の領域に水平に近い断層面を考慮したケース(M7.4)を設定しているのであり、適切に不確かさを考慮している。

(4) 震源を特定せず策定する地震動について

(債権者らの主張)

- ア 観測記録から合理的に導かれる最大の応答スペクトルを考慮すべきこと
 - (ア) 不確かさの考慮について

債務者は、留萌支庁南部地震のK-NET港町観測点等の地震観測記

録を「震源を特定せず策定する地震動」である基準地震動Ss-3として採用しているが、同じ応答スペクトルの地震が全く異なる場所で再度発生するはずがないことや活断層と関連付けることが困難な過去の内陸地設内地震の観測記録が少ないという限界があることを踏まえると、設置許可基準規則解釈や地震ガイドにおける「各種不確かさの考慮」をはぎとり解析の過程のものに限局して、実観測記録をほぼそのまま設計用基準地震動とするのではなく、観測記録から合理的に導かれる最大の応答スペクトルは当然考慮しなければならないというべきである。しかし、債務者は、そのような最大の応答スペクトルを想定しておらず、その基準地震動の策定は不合理である。

(イ) 財団法人地域地盤環境研究所や原子力安全基盤機構による解析結果 財団法人地域地盤環境研究所が、改訂耐震指針の「震源を特定せず策 定する地震動」の評価のために検討を加えた「震源を特定せず策定する 地震動 計算業務報告書」によると、留萌支庁南部地震の地表での地震動のうち、K-NET港町観測点よりも大きな地表最大加速度が発生したと推測される部分がその東側に広がっており、K-NET港町観測点の地震動が同地震の最大地震動ではないことは一目瞭然である。同報告書によると、破壊開始点を変化させた上、破壊伝播効果をも加味させた場合、水平方向での最大地表加速度は、最大2000ガルに達することが分かるが、債務者の計算方法に従うと、導かれる基準地震動は約1038ガルとなり、この程度の加速度まで考慮しなければ、地震大国たる我が国の原子力発電所にふさわしい地震動想定となり得ない。

また、独立行政法人原子力安全基盤機構(以下「JNES」という。)は、地震観測記録の不足を補う目的で、実際の地震記録から導かれたモデルによる地震動解析を行い、M6.5の横ずれ断層によって最大約1340ガルの地震動が生じることを明らかにしている。M6.5はMw

6. 2相当に過ぎないから、上記解析結果を参照する限り、Mw6.5 未満の地震から 1340 ガルを超える地震動が発生することも十分あり得る。

(ウ) I A E A 基準違反であること

債務者の手法は、確立した国際基準にも反する。すなわち、決定論的手法について、SSG-9は、最大潜在マグニチュードの震源をサイト直下に置くか、サイトから特定の水平距離にあると想定し、適切な複数の地震動予測式を適用し、各種のばらつきや不確定性を考慮すべきことを要求しており、国内のどこかの場所で採取された特定の地震動記録を設計基準用地震動として採用するようなことは、どこにも規定されていない。IAEAの基準に従うのであれば、地震本部の見解によるM7.3か、少なくとも地震ガイドの規定に従ったMw6.5を最大マグニチュードとして設定すべきであり、この震源を、サイトの直下か、近傍の特定の場所に置いた上で地震動予測を行うべきである。債務者が「震源を特定せず策定する地震動」において採用する手法は、IAEAの基準に照らしても何ら合理性を見いだせない。

イ 債務者が収集した観測記録について

地震ガイドで収集対象となる内陸地殻内の地震の例として挙げられているのは、1996年3月宮城県北部(鬼首)地震から、2013年栃木県北部地震までわずか17年間の16地震の観測記録だけである。このようにガイドに例示された地震自体少ない上、我が国に設置されている地震計の数も限られていることからすれば、ガイドに例示された地震だけから、1万年に1回以下という低頻度の「震源を特定せず策定する地震動」を決めようというのは無理がある。それにもかかわらず、債務者がこの16地震から岩手・宮城内陸地震等を検討対象から排除し、又はリストに例示されていない新潟県中越沖地震等を考慮せずにした地震動評価は不合理といれていない新潟県中越沖地震等を考慮せずにした地震動評価は不合理とい

うべきである。

(ア) 鳥取県西部地震(日野)等の排除について

まず問題となるのは、鳥取県西部地震のKiK-net日野観測点を除いたことである。地上では南北方向で927ガル、鉛直方向776ガルを記録している上、地中でも東西方向575ガル、鉛直方向318ガルとかなり大きい地震動を記録しており、解放基盤表面はぎとり波に換算しても、少なくとも一部周期帯では本件原子炉の基準地震動を上回る可能性が高い。また、Mw6.5未満の地震のうち、2011年長野県北部地震のK-NET津南観測点と2013年栃木県北部地震のKiK-net栗山西観測点の応答スペクトルは、加藤ほか(2004)のスペクトルを有意に上回っており、これらを子細に検討することにより「震源を特定せず策定する地震動」はより厳しい評価になる可能性もある。

(イ) 岩手・宮城内陸地震の排除について

債務者は、地中で1000ガル以上という極めて大きな地震動を記録した岩手・宮城内陸地震につき、軟岩・火山岩・堆積層の厚さの観点等を挙げ、地域差が顕著であるとして、観測記録収集対象外としている。しかし、そもそも債務者は、将来本件敷地直下ないし近傍で発生する可能性がある地震と、ガイドに例示された地震とでは、多かれ少なかれ地域差があることを前提としながらも、本件原子炉の敷地直下に震源断層モデルを設定する等して理論的に「震源を特定せず策定する地震動」を評価するという手法を採らず、地震ガイドに例示された地震の観測記録を直接用いるという手法を用いている以上、地域差を理由として貴重な観測記録を排除するのは背理である。地震本部において、「陸域で発生する地震のうち活断層が特定されていない場所で発生する地震」の最大マグニチュードは、最低で、鳥取県西部地震と同じM7.3とされているのも、地域差によっては震源断層をあらかじめ特定できない地震を限

定できないことの現れである。

また、債務者は、岩手・宮城内陸地震の観測記録を採用しない根拠と なる本件敷地との地域差について、①変位地形・リニアメント、②第四 紀火山との位置関係、③地質、④応力場、⑤微小地震の発生状況、⑥地 震地体構造について地域差を挙げているが、債務者は、鳥取県西部地震 クラスの地震(M7.3, Mw6.6)が本件発電所直下等で生じるこ とは認めているし、鳥取県西部地震クラスの地震については起こり得る が、岩手・宮城内陸地震クラスの地震は起こり得ないという論拠を債務 者は示していないことからすれば、上記④以外の地域差は、岩手・宮城 内陸地震を考慮しない理由にならない。上記④の応力場については、本 件発電所立地地点では横ずれ型、岩手・宮城内陸地震震源域では逆断層 型の地震が発生し易いという趣旨であると思われ、確かに、横ずれ断層 と逆断層とでそこから発生する地震動の違いを指摘する見解はある。し かし、岩手・宮城内陸地震では、震源近傍のKiK-net一関西の地 中観測点において、NS成分で1036ガルの地震動が観測されており、 これは露頭基盤波(解放基盤はぎとり波相当)に変換すれば1850ガ ル程度に相当すると考えられるところ、本件原子炉に係る震源を特定せ ず策定する地震動のうち最大の基準地震動Ss-3-1(620ガル) とは約3倍もの乖離がある。債務者は本来、横ずれ断層と逆断層とで約 3倍の乖離があることを正当化する論拠を示す必要があるが、そのよう な研究結果は皆無である以上、応力場の違いをいうだけでは岩手・宮城 内陸地震の観測記録を排除することはできない。

(ウ) 新潟県中越沖地震等を考慮しなかったことについて

2007年能登半島地震(M6.9。以下「能登半島地震」という。) や,新潟県中越沖地震(M6.8)といった,事前に活断層が特定できず原子力発電所に想定以上の地震動をもたらした近時の沿岸海域の地震 がこのリストから漏れているのも、極めて問題がある。東京大学教授・ 纐纈一起(以下「纐纈教授」という。)によると、地震ガイドの16地 震以外に新潟県中越沖地震、能登半島地震、福岡県西方沖地震の本震も いわゆる「隠れ断層」から発生した地震とみなすことができるとされる。 新潟県中越沖地震については、はぎとり解析が行われ、柏崎刈羽原子力 発電所1号機で当時東京電力が想定した4倍の1699ガルの地震動を 観測したことが明らかになっているところ、これは電力会社が「詳細な 調査」を実施しても事前に活断層の存在が指摘できなかった場所でも、 このように大きな地震動が発生し得ることを示しており、このような地 震動観測記録を安易に排除すべきではない。また、新潟県中越沖地震に ついては、地表地震断層が認められたか否かにつき、地震本部の中でも 意見が割れたことが窺われることなども踏まえれば、この地震について も事前に震源を特定できないものの1つとして考えるべきである。

(債務者の主張)

ア 最大の応答スペクトルを想定すべきとの主張について

(ア) 不確かさの考慮について

債務者は、留萌支庁南部地震を考慮した地震動については、K-NE T港町観測点の記録からはぎとり解析を行い、基盤地震動を評価したところ水平最大加速度は561ガルと求まったものではあるが、表層地盤の減衰定数に不確かさを考慮して算出したところ同609ガルと求まり、さらにこれに安全余裕を考慮して、同620ガルの地震動として策定したものであり、不確かさを考慮している。また、鳥取県西部地震賀祥ダムの観測記録についても、本件発電所立地地点と鳥取県西部地震震源域では地震ガイドに示された「活断層の成熟度」に地域差が認められ、地震が発生する深部地下構造にも違いがあると考えられるものの、自然現象の評価と将来予測には不確かさが残るため、大局的にはいずれも西南

日本の東西圧縮横ずれの応力場であることを踏まえ、更には原子力安全に対する信頼向上の観点から、より保守的に基準地震動として採用することとしたものであり、不確かさを加味している。債務者が策定した震源を特定せず策定する地震動は、「観測記録から直接導かれる応答スペクトル」をそのまま採用したものではなく、上記のような不確かさや保守性を考慮し、適切に策定したものである。

(イ) 財団法人地域地盤環境研究所等の解析結果について

震源を特定せず策定する地震動は、観測記録を基に策定するものであり、債権者らが主張するような仮想的な震源モデル(断層面)を構築して地震動を評価するものではない。また、そもそも、震源を特定せず策定する地震動は、詳細な調査を前提とした敷地ごとに震源を特定して策定する地震動に最大限の努力を払った上で、それでも評価し損なう可能性を埋める補完的な位置付けであり、プラントに考慮すべきミニマムリクワイアメントとして導入されたもので、最大規模の地震を想定すべきものでもない。

債権者らが引用する計算業務報告書は、財団法人地域地盤環境研究所が留萌支庁南部地震における地震動について検討した Maeda and Sasatani (2009)に基づく断層モデルを用いて地震動評価を行ったものであるが、原子力規制委員会が「断層モデルを介さずに策定する」との考え方を示していることに照らせば、当該評価結果が震源を特定せず策定する地震動の対象とはなり得ないことは明らかである。さらには、Maeda and Sasatani (2009)は、債務者がはぎとり解析に用いた佐藤ほか(2013)の知見を踏まえていないこと、つまり詳細な調査に基づく地盤情報を踏まえずに断層モデルを構築したものであること、財団法人地域地盤環境研究所による評価が Maeda and Sasatani (2009)の断層モデルのパラメータを仮想的に変更して仮想的な評価を行ったものであること

を踏まえると,この評価から得られた地震動は,震源を特定せず策定する地震動の対象として相応しい観測記録とはおよそいい難い。

また、債権者らが主張するJNESの報告書は、JNESが震源を特定しにくい地震による地震動に確率論的な観点から検証を加えたもの、つまり、震源を特定しにくい断層による地震動強さの年超過確率を評価したものである。このため、JNESによる検討においては、発生確率の低いケースも想定する必要があることから、仮想的な断層モデルに仮想的な条件をいくつも重畳させた数多くの組合せによる地震動が解析評価されており、そのうちの1つで、最大加速度が約1340ガルとなる結果が得られたものであり、その地震動をすぐさま基準地震動に採用すべきという主張自体、発生確率や地域特性を無視したものであり、科学的合理性に欠けるものである。

(ウ) IAEA基準違反について

そもそも、地震の発生頻度の少ない欧米(IAEAの基準も含む。)では確率論的な手法が主流なのに対し、日本では地震の発生状況や活断層の評価を踏まえた決定論的な手法が主流となっている。地震動のように自然現象を対象とした評価では、地域的な事情を考慮し、それに適した手法が採用されるべきであり、これを無視して、IAEAや他国の基準に照らして、日本で採用されている手法の妥当性を議論するのは適切ではない。また、我が国における規制内容は、IAEAの安全基準と概ね良好に整合するものであるが、そもそも、IAEAの安全基準はその全てを加盟各国の規制内容に採用するよう義務付けるものではなく、加盟各国の判断により取り入れるものである。したがって、IAEAの安全基準の全てをそのままに採用せずとも、これを踏まえ、専門的技術的知見に基づいて、取り入れるべき要件を判断した上で定めることは何ら不合理なものでもない。

イ 債務者が収集した観測記録について

債権者らは、地震ガイドが例示するのは16地震にすぎず、不確かさの考慮が義務付けられていることからしても、16地震のみに依拠して評価すべきではない旨を主張するとともに、能登半島地震や新潟県中越沖地震などの観測記録を評価に含めないことは著しく不合理であるなど主張するが、次のとおり、債務者が当該観測記録を評価に含めなかったことは合理的である。

(ア) 鳥取県西部地震(日野)等の排除について

震源を特定せず策定する地震動を評価する上では、確かな地盤情報が得られていること、はぎとり解析が可能であることが不可欠であるけれども、鳥取県西部地震のKiK-net日野観測点等は詳細な地盤情報が得られていないから、当該観測記録を評価に含めなかったことは合理的である。なお、債務者は、地盤情報が得られていないなど、十分なはぎとり解析が現時点でできない観測記録についても、今後、観測点の地盤に関する調査等が進み、新たな知見が得られれば、それを基に改めて評価を行う考えである。

(イ) 岩手・宮城内陸地震の排除について

Mw 6. 5以上の地震(事前に活断層の存在が指摘されていなかった地域において発生し、地表付近に一部の痕跡が確認された地震)は、震源断層がほぼ地震発生層の厚さ全体に広がっているものの、地表地震断層としてその全容を表すまでには至っていない地震であり、活断層や地表地震断層の出現要因の可能性として、地盤の上部に軟岩や火山岩、堆積層が厚く分布する場合、活断層の密度が少なく活動度が低い場合などの地域差が存在すると考えられているため、Mw 6. 5以上の地震の観測記録を収集対象とするか否かを判断するにあたり、地域差の検討を行うのが合理的である。そうであるところ、岩手・宮城内陸地震について

は、当該地域に火山岩や堆積岩が厚く分布するため、地表が火山噴出物に覆われているとともに侵食速度も速く、この地震を事前に特定することが難しかったのに対し、本件敷地周辺は、火山岩や堆積岩が厚く分布する地域ではないため、仮に岩手・宮城内陸地震のような地震が想定されるとするならば、事前の地質調査で特定が可能と考えられることなどからすると、同地震のような地震が本件発電所の立地地点において発生することは考え難く、地震ガイドの規定に照らしても、震源を特定せず策定する地震動として評価する必要はないと判断したものであり、何ら不合理ではない。

(ウ) 新潟県中越沖地震等の不考慮について

能登半島地震や新潟県中越沖地震については、地震ガイドの策定にあたり、地震津波基準検討チームの第10回会合において、震源を特定せず策定する地震動について議論がなされた結果、詳細な地質調査を実施すれば事前に震源の特定が可能との判断がなされたため、リストに含まれていないものであり、債務者が上記各地震の観測記録を評価に含めなかったことに何ら不合理な点はない。

(5) 年超過確率について

(債権者らの主張)

- ア 債務者のした年超過確率の評価は、原子力学会(2007)に準拠しており、最新の知見である「原子力発電所の地震を起因とした確率論的安全評価実施基準:2015」(以下「原子力学会(2015)」という。)を踏まえられておらず、その信頼性は失われている。また、これまでの国内の原子力発電所における基準地震動の超過実績を踏まえると年超過確率の算出方法がIAEAが定める国際的な基準に合致していないことは明白である。
- イ 債務者が年超過確率を算定するために作成したロジックツリーは、基

本的に、債務者が基準地震動策定の際に行った不確かさの考慮に、発生 確率と距離減衰式等のばらつきの考慮を加えたものに過ぎず、低頻度の 現象の確率を計算するための真摯さに著しく欠ける。

(債務者の主張)

債務者が評価した年超過確率は、原子力学会(2015)で実施された原子力学会(2007)からの改定内容を適宜取り込んだ評価となっている。したがって、仮に原子力学会(2015)を反映したとしても、その影響は限定的であり、債務者がした年超過確率の評価の信頼性は否定されない。また、原子力学会(2007)は、学識者、実務者の長年にわたる議論と公正な手続を経て作成されたものであって十分な信頼性を有するから、これにのっとって債務者が算出した年超過確率も合理的である。

4 争点4 (耐震設計における重要度分類の合理性) について

(債権者らの主張)

福島第一原発事故の教訓を踏まえた政府の反省と対策の表明からすれば、外部電源の信頼性を高め、耐震性を向上すること、及び計装系が事故時に機能しないことがないようにすること、そのために重要度分類、耐震重要度分類を見直し、計装系に関する基準を見直した設置変更許可基準を規定し、いずれも設置変更許可申請において審査されるべき事項となっていなければならないのであり、次のとおり、原子力規制委員会は、災害の防止上支障がないものとして規則を定める義務を怠っているといわざるを得ない。

(1) 外部電源について

外部電源は、全交流電源喪失を免れ、炉心損傷を防ぐために極めて重要な設備である。福島第一原発事故を経てもこれをCクラスのままに留めておくのは、周辺住民の安全性よりも経済性(コスト)を優先しようという動機に基づくものといわざるを得ず、審査基準として不合理であるし、地震のリスクが高い本件原子炉においては特に不合理な対応であって人格権侵害のおそ

れが否定できない。

(2) 計測制御系統施設について

設置許可基準規則23条2号では、通常運転時のみならず運転時の異常な 過渡変化時においても、原子炉水位や原子炉冷却材の圧力、温度及び流量、 原子炉格納容器内の圧力、温度等を、想定される範囲内で監視できる計測制 御系統施設を設けることが義務付けられている。福島第一原発事故では、水 位基準面気器が加熱され、蒸発により基準水面が低下してしまうという問題 から、水位計などの数値がまったく信用できず、運転員たちは原子炉の状態 が十分に把握できないまま過酷事故対応に当たらなければならなかった。

債務者は、電源喪失時に計装制御系がダウンすることについての対策はある程度行ったようであるが、原子炉の温度、圧力が上昇し基準水面が低下してしまうことによる水位計の誤表示等の問題については、解決することなく放置している。少なくとも福島第一原発事故で実際に生じた状況は、上記規則における「想定される範囲内」というべきである。この問題を放置することは現行法令上不合理であって、計装制御系統の誤表示によって過酷事故対応を誤るおそれがある。

(3) 非常用取水設備について

非常用取水設備を構成する海水ピット堰、海水取水口、海水取水路、海水ピットスクリーン室、海水ピットポンプ室のうち、海水ピット堰はSクラスであるが、その余の設備の耐震重要度分類はいずれもCクラスとされている。しかし、海水ピット堰以外の非常用取水設備を構成する設備が地震で破壊されれば、原子炉補機冷却海水設備としての機能が失われ、原子炉停止後の原子炉冷却に失敗することになるから、非常用取水設備は全てSクラスにしなければならないというべきである。

(債務者の主張)

(1) 外部電源について

債務者が外部電源についてCクラスの位置付けとしているのは、本件原子炉の外部電源による電力が、本件発電所以外の発電所から変電所を経て送電線により供給されるものであるところ、他の発電所から本件原子炉に至る間に存在する全ての設備をSクラスの設備と位置付け、それらに対して人的、物的資源を投じることはおよそ現実的ではなく、「グレーデッドアプローチ」の考え方に基づき最も高い安全性を確保するという観点から不合理であるからである。

原子炉の安全確保に係る電源供給については非常用ディーゼル発電機がその役割を担うこととし、非常用ディーゼル発電機に特に高い信頼性を持たせることにより原子炉の安全性を担保するということが、原子力発電所の設計上予定された姿であって、外部電源に、非常時における原子炉の安全を確保するための電源供給の役割を担わせているものではない。したがって、外部電源がSクラスの耐震安全性を備えなくても安全性に欠けるところはない。

(2) 計測制御系統施設について

債務者は、本件原子炉の計測設備について、設置許可基準規則23条を踏まえ、通常運転時及び異常な過渡変化時においては、炉心中性子束、中性子束分布、原子炉水位、原子炉冷却材圧力、温度及び流量、原子炉格納容器内圧力及び温度等の重要なパラメータを監視できるようにしている。また、設計基準事故が発生した場合においては、状況を把握して対策を講じるために必要な、原子炉格納容器内の圧力、温度等のパラメータについて、設計基準事故時に想定される環境下において十分な測定範囲及び期間にわたり連続して監視、記録できるようにしている。これに加えて債務者は、設置許可基準規則58条を踏まえて、重大事故等発生時において原子炉の状態を把握するために特に監視することが重要となる「重要監視パラメータ」(原子炉容器圧力・温度・水位、原子炉格納容器内圧力・温度・水位等)を選定し、本来これらを監視するための計測設備が故障等した場合にも原子炉施設の状況を

把握することができるよう, 重要監視パラメータを推定するための「重要代替監視パラメータ」を計測する設備を重大事故等対処設備(常設耐震重要重大事故防止設備又は常設重大事故緩和設備)と位置付けて整備するとともに, 可搬型計測器, 電源(空冷式非常用発電装置)等も新たに整備している。

(3) 非常用取水設備について

非常用取水設備を構成する海水取水口、海水取水路、海水ピットスクリーン室、海水ピットポンプ室及び海水ピット堰は、いずれも基準地震動Ssに対する耐震安全性が要求される常設重大事故緩和設備として位置付けられており、それぞれ基準地震動Ssに対する耐震安全性が確保されている。また、基準津波に対しても、引き波時において海水ポンプの機能を維持できるよう、開閉式のフラップゲートを有する海水ピット堰を設置しており、原子炉補機冷却海水系の冷却に必要な海水を確保することができる。

5 争点5 (使用済燃料ピット等に係る安全性) について

(債権者らの主張)

使用済燃料は、原子炉から取り出された後もなお崩壊熱を出し続けているので、水と電気で冷却を継続しなければならないのであり、その危険性は極めて高い。

しかし、債務者が福島第一原発事故後に本件原子炉に講じた対策は、可搬式 の消防ポンプによる使用済燃料プールへの直接注水等の対策に限られ、いずれ も人為的な作業を伴うものであり、次のとおり、深刻な災害が万が一にも起こ らないというために必要な対策は講じられていない。

(1) 堅固な施設で囲い込まれていない点について

原子力発電所の安全確保の最も主要な部分は、核分裂生成物の拡散を防止するための「壁」の健全性を、平常時にも事故時にも、いかにして維持するか、すなわち「閉じ込めるか」ということであるが、本件原子炉において、 使用済燃料は、原子炉内の核燃料よりも核分裂生成物をはるかに多く含むに もかかわらず、建屋という極めて脆弱な「壁」によってしか囲われていない。 そして、福島第一原発事故において水素爆発により同4号機の建屋の屋根が 吹き飛び、使用済燃料プールがむき出しになったことも踏まえれば、①外部 からの脅威により使用済燃料の冠水状態が維持できなくなるような事態が生 じないようにし、また、②使用済燃料の冠水状態が維持できなくなった場合 に放射性物質の放出を防ぐため、堅固な施設によって防御を固められる必要 があるというべきである。本件原子炉の使用済燃料プールを囲んでいる燃料 取扱建屋の外壁及び屋根は、100m/秒の竜巻が襲来した場合、鋼製材の 飛来物の衝突によって貫通が生じるという程度の強度しかないのであり、本 件原子炉で、深刻な災害を万が一にも起こらないというために必要な対策が 講じられているとはいえない。

(2) 使用済燃料プールの耐震安全性について

ア 冷却設備について

使用済燃料は、その燃料の崩壊熱を燃料プールの水で長期間冷却しなければならず、燃料プールには何回分もの取り換えられた使用済燃料が保管されているのであるから、その冷却が失敗した場合の危険性は高い。これほど安全上重要な施設であるにもかかわらず、使用済燃料プール(ピット)の一部が重要度分類クラス2、耐震重要度分類Bクラスとされたままである。本件原子炉の設置変更許可申請書においても、使用済燃料ピット水浄化系、使用済燃料ピット水冷却系はいずれもBクラスとして申請され、補正されないまま設置変更許可処分がなされている。

かかる審査基準と債務者の措置は福島第一原発事故において使用済燃料 プールの水位を保てたのは単なる幸運によるものであるという貴重な教訓 を無視するものであり、大地震のリスクが特に高い本件原子炉においては 明らかに不合理であって、使用済燃料ピットの燃料が損傷し広島市を含む 広い範囲が強度に汚染されるおそれがある。これらは、クラス1、Sクラ スに分類し直して審査がなされる必要があり、それをしないままでは基準 地震動に対する耐震安全性が確認されていないから、深刻な災害が万が一 にも起こらないというために必要な対策が講じられているとはいえない。

イ 計測設備について

水位計や温度計の計測装置が脆弱で破損する可能性があるということは、使用済燃料プールの水位が低下し温度が上昇した場合に、正確な状況の把握が困難になることを意味する。国会事故調査会は、福島第一原発事故では電源喪失による計装系の機能喪失が大きな問題であったが、仮に電源があっても炉心溶融後は、設計条件を遥かに超えており、計測器そのものがどこまで機能するか、既設原子力発電所での計器類の耐性評価を実施し、設備の強化及び増設を含めて検討する必要があると提言している。本件原子炉の使用済燃料プールの計測装置も、Sクラスとして審査されておらず、基準地震動に対する耐震安全性が確認されていないから、深刻な災害が万が一にも起こらないというために必要な対策が講じられているとはいえない。

(3) 稠密化された使用済燃料プールの危険性について

本件原子炉施設に係る使用済燃料プールも、リラッキング、本件発電所1、2号炉との共用化等により使用済燃料の稠密化が行われているのであり、乾式貯蔵等の導入により使用済燃料の密度を下げる必要性がある。深刻な災害が万が一にも起こらないようにするという立場に立つならば、乾式貯蔵等の導入により使用済燃料の密度を下げる対策は、将来の対策として先送りが許されるものではなく、直ちに実施されなければならないものである。

(4) 重量物落下による危険性について

本件原子炉の使用済燃料プールにおいては、地震時にクレーン本体、移送中のキャスク等の重量物が落下し、使用済燃料プール又は使用済燃料が破損する危険性があるから、深刻な災害が万が一にも起こらないというために必

要な対策が講じられているとはいえない。また、本件原子炉の使用済燃料プールクレーンには、免震・制振装置が設置されていない。直接基礎に固定されていないというクレーンの特殊性、クレーンや移送中のキャスクが落下した場合の危険性に鑑みれば、同クレーンにおける免震・制振装置の設置は、耐震安全性を向上させるための付加的な対策ではなく、万が一にも深刻な災害を起こさないために必要不可欠な対策と位置付けるべきである。

(債務者の主張)

(1) 堅固な施設で囲い込まれていない点について

そもそも原子炉格納容器は、外部からの不測の事態に備えた炉心の防護を その目的として設計されているものではなく、債権者らは原子炉格納容器の 機能に係る理解を誤っている。原子炉格納容器は、原子炉冷却材の喪失等が 発生した場合に、内部から放射性物質を含む高温、高圧の水蒸気が周辺環境 へ放出されることを万が一にも防止するために設けられているものであり、 耐圧性能を備えているのもそのためである。

(2) 使用済燃料プールの耐震安全性について

ア 冷却設備について

使用済燃料ピット水冷却設備が機能を喪失し、使用済燃料ピット水を冷却することができなくなった場合でも、Sクラスの設備である使用済燃料ピット水補給設備により使用済燃料ピット内にホウ酸水を供給することで使用済燃料の冠水状態は保たれる。そして、冠水さえしていれば使用済燃料の健全性が維持されるため、放射性物質を環境に異常に放出する危険はない。また、使用済燃料ピット水冷却設備は、Sクラスの設備ではないものの、使用済燃料ピット水冷却設備のうち、通常時において使用済燃料ピット水の冷却に用いる使用済燃料ピット冷却器、使用済燃料ピットポンプ及び配管については、波及的影響の観点から評価を行い、Sクラスと同じく基準地震動Ssに対する耐震安全性を有していることを確認している。

イ 計測設備について

使用済燃料ピットの状態を確認するために重要な計装設備(水位計,温度計及び監視カメラ)を常設重大事故緩和設備として設置するとともに,可搬型重大事故等対処設備として可搬式の水位計も配備している。常設重大事故緩和設備及び可搬型重大事故等対処設備については基準地震動Ssに対する耐震安全性の確保が要求されることから,これらの計装設備及び可搬式の水位計についてもSクラスと同じく基準地震動Ssに対する耐震安全性を確保している。したがって,使用済燃料ピットの状態を把握するための計装設備も高い耐震安全性を有している。

(3) 稠密化された使用済燃料プールの危険性について

債務者は、本件原子炉の使用済燃料ピットにおける使用済燃料の保管にあたって、全炉心燃料及び1回の燃料取替えに必要とする燃料集合体数等を考慮して、それに十分に余裕を持たせた設備容量を確保した上で、崩壊熱の除去及び放射線の遮へいに十分な量のホウ酸水により使用済燃料を冠水させた状態で保管している。使用済燃料ピット水を継続的に冷却するための使用済燃料ピット水冷却設備は使用済燃料ピット、に貯蔵した使用済燃料の崩壊熱を十分除去できる能力を有している(万一、使用済燃料ピット水の漏えいが生じた場合には、使用済燃料ピット水補給設備によりホウ酸水を補給できる。)。また、仮に設備容量一杯まで燃料を貯蔵した時にホウ素を含まない純水で満たされるという厳しい条件を想定しても、使用済燃料ピットの未臨界性を確保できることを確認している。

(4) 重量物落下による危険性について

落下時に使用済燃料ピットの機能に影響を及ぼす重量物については、使用 済燃料ピット周辺の状況、現場における作業実績、図面等を確認の上、影響 を及ぼす重量物として、燃料取扱棟の構造物、使用済燃料ピットクレーン及 び燃料取扱棟クレーンを抽出した。債務者は、抽出したそれぞれの重量物に 対して、燃料取扱棟の構造物については、基準地震動Ssにより使用済燃料ピット内へ落下することがないよう、使用済燃料ピットクレーンについては、基準地震動Ssによる地震力によってクレーン本体、転倒防止金具及び走行レールに発生する荷重が許容応力以下となること、すなわち、基準地震動Ssにより転倒、破損等して使用済燃料ピット内へ落下することがないよう、燃料取扱棟クレーンについては、使用済燃料ピットの上部に走行レールを敷設せず、仮に走行レールから脱落したとしても、建屋の構造上、クレーン本体及び吊荷が使用済燃料ピットに落下しないよう対策を講じている。

6 争点 6 (地すべりと液状化現象による危険性) について (債権者らの主張)

(1) 地すべりについて

本件原子炉の敷地及び周辺斜面は、いずれも25~60度という地すべりが発生するのに十分な傾斜がある上、地すべりを起こす素因を相当に有しており、地震を引き金として地すべりを引き起こす可能性が極めて高い。それにもかかわらず、次のとおり、債務者の調査検討は不十分であるから、地すべりによる人格権侵害の具体的危険性が認められる。

ア 本件原子炉周辺の地質等

本件原子炉の原子炉建屋の南側斜面は、高さが地上約82m、そのうち地上から32m付近までは傾斜が60度もある急斜面であり、そこから上の部分も傾斜が約45度の斜面となっている。また、佐田岬半島は、一般に著しい片理が発達し、薄く板状又は小片状に割れやすいという性質を持つ片岩類(緑色片岩、黒色片岩、珪質片岩、砂質片岩、石灰質片岩及び礫質片岩)が分布する三波川帯に属しており、日本でも有数の地すべり発生地帯で、破砕帯地すべりの多発地帯として知られている。

債務者は、本件原子炉の周辺斜面の安定性について、解析モデルを作成し、基準地震動Ssを用いた解析を行うことにより評価した旨述べ、その

解析モデルの作成にあたって、「斜面の高さ(約30m)に対して、重油タンクと東側斜面の法尻との離隔距離(約90m)が十分に確保できて」いるために、「詳細な解析評価の必要性はないと判断し」、解析モデルすら作成していない。しかし、地すべりの移動現象は、自然的誘因や斜面勾配等の地形的要因、さらには地質時代や岩相などの地質的要因が複雑に関係しており、未だ完全なメカニズムの解明には至っていないのであるから、斜面の高さに対し法尻からどれほどの離隔距離があれば、地すべりにより崩れてきた土塊が到達しないかなどということは、不明な事柄である。また、重油タンクの東側斜面において地すべりが発生した場合に、土塊の全部又は一部が北西方向に移動し、斜面を流れ落ち、その下にある本件原子炉の原子炉建屋に衝突する可能性も否定できない。加えて、重油タンクの東側斜面上に設置された鉄塔が倒壊し、これが土砂により運ばれる危険性も指摘できる。それにもかかわらず、債務者は、単に重油タンクと法尻との離隔距離のみをもって解析モデルすら作成しなかったのであり、詳細な調査を怠っていることは明白である。

イ 三波川帯にあること

三波川緑色片岩は海溝付加帯において、沈み込む海洋プレートの上部がはぎ取られ、陸側に付加したものとされているところ、この海洋プレート上部層は、海嶺で生産された玄武岩層よりなるが、この玄武岩層は均質ではなく、枕状溶岩、ガラス状の玄武岩破片の堆積したハイアロクラスタイト、枕状溶岩の大小のかけらを含むハイアロクラスタイト・ブレッチャからなり、これらは場所により量的にも広がりの面でも極めて不均質である。そして、枕状溶岩やその岩片は押しつぶされる度合いが小さいが、ハイアロクラスタイトは著しく片状化するなど、緑色片岩層の脆弱面となる。この種の面がどう連続し変化するかということは、地盤及び周辺斜面の安定性にとって極めて重要な事項であり、債務者のように、ボーリング調査に

よって柱状にどれくらいの長さで回収されるかを基準に形状観察を行うだけでは全く不十分である。コアとして回収された新鮮な状態では原岩に関わらず一定の強度を持っていても、長期的には強度に著しい違いを生じることになり、地震の震動に対して弱い面を与える結果を招来することから、コアとして回収された緑色片岩の「原岩」を観察、記載する必要があるにもかかわらず、債務者は、コアとして回収された緑色片岩の原岩が何かを全く考慮していない。

ウ Aの鑑定

松山地方裁判所昭和48年(行ウ)第5号事件の鑑定人Aは、同事件にお ける鑑定(以下「別件鑑定」という。)において、①本件敷地岩盤の岩質 は、決して堅硬なものではなく、むしろ脆弱なものであり、本件敷地及び その周辺における地すべり発生の可能性は、地質上の諸特徴から見ると、 決して少なくないと判断される,②本件敷地及びその周辺は,急峻な山岳 が屹立していて、しかも、高角度の断層・破砕帯が少なからず存在する場 所では、当然、地すべりの発生する可能性がある、③破砕帯地すべりでは、 台風期や梅雨期に多量の降雨が破砕帯に沿って地下に滲透し、岩石の固結 力が低下することによって起こりやすいところ、現地調査の結果、試掘横 坑内に多量の水がたまっていることが認められたことなどから、地下水面 がかなり高い位置に存在するものと予想されるとした上、M7クラスの地 震が発生する可能性のある本件敷地及びその周辺では地震の可能性も考慮 しなければならないところ、基礎岩盤にこれらのすべり面があり、とりわ け地下水面が存在していて、これらのすべり面が湿潤になっている場合に は、地震時に際してすべり面が滑動する可能性が多分にあると考えられる としている。

エ 検討すべき課題等について

債務者が、従来の資料に加え、平成22ないし24年に新たに行った深

部ボーリング調査の結果を踏まえて作成した断面図によれば、緑色片岩層 (約470メートル)の下位は、主として泥質片岩層とされているところ、泥質片岩層は、海溝で沈み込む海洋プレートの上面に堆積した泥砂層が海溝で陸側に付加したものであって、特に泥質片岩は鱗片状化が強く、片岩層中では最も脆弱な層である場合が多い。そのため、本件敷地地盤の下部には、物性の異なる緑色片岩層と泥質片岩層との境界及び泥質片岩層中の無数の脆弱層が存在すると考えなければならず、これらの弱面は、南海トラフのM9クラスの地震が発生した場合に、四国全体が水平ずれを起こすと想定したとき、大きなリスク要因となり得る。それにもかかわらず、債務者は、敷地地盤の下部に存在すると考えられる脆弱層について、何ら検討を行っていない。

さらに、本件敷地周辺には、佐田岬半島の南北圧縮による緩やかな背斜構造に伴う軸面破断及び東西伸長によるものなどの破断面が存在しており、これらの破断面は、水の浸透を促進し、緑色片岩層の脆弱層(ハイアロクラスタイト由来の強片理層)へ水を運ぶことによって風化を促進し、すべり面の成長を準備する可能性があることから、節理ないし破断面が深さ方向及び側方へどう連続しどう変化するかといった、節理周辺の岩相変化(変質)などの観察・記載が必要である。それにもかかわらず、債務者は、こうした観察・記載を行っていない。

(2) 液状化について

ア 液状化の危険性について

液状化は、緩い砂質土層と地下水による飽和という二つの条件の組み合わせがある場所で生じる。そして、海岸埋立地は、造成されて間もない締まりのゆるい地層であり、海辺にあるので地下水で完全に飽和し、埋立材料は海底砂であることが多いので、液状化が最も起こりやすい地形であるところ、本件敷地にも埋立地が多数ある。また、過去の地震では、液状

化が発生した震度は、概ね震度5程度以上といわれている。本件敷地においては南海トラフのM9クラスの超巨大地震や中央構造線断層帯においてM8クラスの巨大地震が発生する危険性があり、内閣府検討会においても本件原子炉がある伊方町の想定震度は「6強」との報告がなされている。したがって、本件原子炉の敷地は、液状化の発生の危険性が極めて高い。

イ 液状化の影響について

本件敷地においては、各原子炉建屋と、原子炉に通ずる各配管やタービン発電機、復水器、給水加熱器、給水ポンプなどを収納するタービン建屋、発電機と送電系統の連絡や切り離しを行う機器類が設置されている特別高圧開閉所、貯水口、冷却用海水の出入り口となる放水口が散在している。敷地が液状化すれば、それぞれの建屋ごと不等沈下し、死活的役割を担っている一次冷却水を通水する配管を初めとする各配管類が破断し、原子炉が冷却不能な事態を発生させる恐れが極めて高い。さらに、敷地の不等沈下により、道路が陥没等を起こし、シビアアクシデント対策として用意されている可搬性の非常用設備や人員の移動ができず、結果的にシビアアクシデント対策を実施することが不可能となり、破滅的な事故が発生する危険性がある。

(債務者の主張)

(1) 地すべりについて

ア 本件原子炉周辺の地質等について

債権者らは、斜面の高さに対して法尻からどれほどの離隔距離があれば、地すべりにより崩れてきた土塊が到達しないかなどということは不明であると主張し、債務者が重油タンクの周辺斜面についての評価を怠ったとして非難する。しかし、債務者が詳細な解析を行わなかったのは、本件原子炉の重油タンクとその東側斜面の法尻との距離は約90m、東側斜面の高さは約30mであるところ、斜面の高さと地すべり土塊の到達距離との関

係について、地すべり土塊の到達距離は斜面の高さの1.4倍(50m未満の場合は50m)に収まるとする知見や、土砂災害による被害影響範囲として急傾斜の高さの2倍(概ね50mを限度)とする知見に照らして、重油タンクと東側斜面の法尻との距離及び東側斜面の高さとの関係は、十分に余裕があると考えられるためであり、合理的な判断である。

イ 三波川帯等について

債権者らは、本件敷地が地すべり地帯とされる三波川帯に位置すること から,本件原子炉においても地すべりが発生する危険性が高いかのように 主張するが、債権者らのこの主張自体、結局のところ、三波川帯には結晶 片岩が分布するため地すべりが多いという一般論的、抽象的、定性的な情 報を基に、本件発電所に地すべりが発生する危険性をいうものに過ぎない。 この点、債務者は、本件発電所の建設時において、詳細な調査により地 形・地質・地質構造について十分に把握するとともに、ボーリング調査、 試掘坑内の試験等を通じて,敷地地盤を構成する岩盤の性状,物理的・エ 学的特性等に係るデータを収集して、ボーリングコアの観察による地質柱 状図を作成し, 地質断面図を作成した上で, 敷地の地質・地質構造の面的 な広がりも踏まえて解析を実施し、本件原子炉が地盤に係る安全性を有し ていることを確認している。なお、債務者は、本件発電所を新設した際、 風化した地盤を切り取った上で、S波速度として2600m/秒を有する 非常に堅硬で、十分な地耐力を有している新鮮な岩盤上に各施設を設置し、 周辺斜面についても同様に、地すべりの可能性のある表土や風化した岩盤 を削り取るなどの対策を講じている。

ウ 別件鑑定について

債務者は、詳細な調査に基づき、本件敷地の地盤の岩盤について、まずは「電中研方式」による分類を行い、さらに同じ分類であっても風化の程度や割れ目の状態等によって強度等に幅があることを踏まえた解析用物性

値の分類を行っており、総じて堅硬な岩盤ではあるものの、全く一様なものとして扱っているわけではなく、局所的に岩盤の物性が異なるような場合には、それを適切に評価に反映している。また、債務者は、本件発電所の地下水位の観測結果によると、地下水位はCL級岩盤上端より深い位置にあることが分かったが、すべり安全性に係る評価においては、これを保守的に、斜面部についてはCL級岩盤上端に、建屋部については建屋底面に、その他の箇所については地表面にそれぞれ地下水位を設定しているところ、これは、実質的に地下水で地盤が飽和している状態を想定しているのと同じことになるのであって、債権者らが指摘する地下水や降雨の影響は、債務者が行うすべり安全性に係る評価に既に織り込まれている。その上、地震についても基準地震動Ssによる地震力が作用した場合を想定した評価を行っているなど、安全性の確保に問題はない。

エ 検討すべき課題等について

債務者は、本件原子炉の基礎地盤及び周辺斜面において、地すべりに関する解析評価を行うにあたり作成した解析モデルにおいて「岩盤は全体として均質のものと考え」た事実はない。債務者は、本件原子炉の地盤の安定性を評価するにあたり、詳細な調査の結果に基づき、基礎地盤を構成する岩盤の解析用物性値を設定し、解析モデルを作成している。

(2) 液状化について

ア 液状化の危険性について

本件敷地の一部には埋立部があるものの、本件原子炉の耐震重要施設及び常設重大事故等対処施設は、全て堅硬な岩盤に支持させているため、本件敷地において、仮に埋立部が液状化したとしても、耐震重要施設及び常設重大事故等対処施設が損壊することは考えられない。また、本件敷地の埋立部は、地下水位の平均は地表面から約10mの深さで飽和はしておらず、埋立部の土全体が粒が大きいものから小さいものまで幅広い土粒子で

構成されており、埋立部のS波速度は300m/秒以上と良く締まった地盤であることを確認しているのであって、債権者らの主張はいずれも事実に反する。

イ 液状化の影響について

債務者は、新潟県中越沖地震の際には、東京電力柏崎刈羽原子力発電所において液状化現象が発生し、構内道路にも変状が生じたことを踏まえ、災害時におけるアクセスルートを確保する観点から、仮に埋立部において液状化現象が発生したとしても、主要構内道路の通行性が確保できるよう、種々の対策を行っている。

また、埋立部にある道路で若干の段差が発生することも想定される大型 埋設物が地中を横断する箇所について、ジオテキスタイル補強工法による 耐震性向上工事を実施した。そのため、補強路盤下部の支持地盤に仮に段 差が発生したとしても、ジオテキスタイルが引張補強材として機能し、セ メント安定処理を施した土層に作用する曲げモーメント に抵抗すること で、補強路盤が緩やかに変形し、道路面に段差が生じることなく、車両の 走行が可能な状態を維持できる。

7 争点7 (制御棒挿入に係る危険性) について

(債権者らの主張)

(1) 制御棒で「止める」ことが困難であること

原子力発電所の安全確保策は、「止める」、「冷やす」、「閉じ込める」という標語で喧伝されている。「止める」とは、制御棒を燃料棒の間に挿入することによって、中性子を吸収して核分裂の進行を抑えることをいうところ、本件原子炉では、基準地震動Ssによる激しい揺れの中で、制御棒が安全に挿入されることが確認されておらず、安全確保策の第一段階である「止める」こと自体が極めて困難というべきである。すなわち、債務者は、鉛直動により制御棒挿入経路の機器が上方に移動した場合には、上向きの摩擦力が作用し、

制御棒の挿入を遅らせる効果が生じる。一方、鉛直動により制御棒挿入経路の機器が下方に移動した場合には、下向きの摩擦力が作用し、制御棒の挿入を早める効果が生じる(相殺する)旨主張するが、これは誤りである。論理的には、上下振動が加わる場合、制御棒と制御棒案内管の間で、相対移動距離を増やし、各種の抗力を合計した全体の抗力が大きくなるのであり、制御棒の挿入を遅らせる方向に作用するものである。地震外力による抗力として水平動の影響のみならず、上下動の影響を考慮して制御棒挿入時間を計算しなければならないが、債務者はこれを考慮していない。

また、下方向振動位相のずれ(制御棒が、より早く挿入される方向のずれ) の場合、債務者の期待とは異なり、制御棒挿入時間の減少につながるわけで はないから、これも考慮しなければ、制御棒挿入が安全に挿入されることの 確認がされたとはいえないが、債務者はこれを考慮していない。

(2) 解析コードの問題

債務者は、新規制基準を踏まえて制御棒挿入性の評価を行った際には、応答倍率法に代えて、基準地震動Ssによる時々刻々の揺れを基に解析コードを用いて制御棒挿入時間を算定している。しかし、当該解析コードは、基準地震動Ssの代表的な時刻歴モード(例えば、エルセントロ波など)を用いているものと推測されるが、その代表的な時刻歴モードが、本件原子炉に将来生じる地震時刻歴全てをカバーしているわけではないため、決して安全を確保しているとはいえない。

(債務者の主張)

(1) 制御棒挿入時間の想定が合理的であること

制御棒が落下中に制御棒挿入経路の機器に接触すると、制御棒に摩擦力が生じる(この摩擦力により制御棒の挿入を遅らせる効果が生じる。)。この摩擦力については、地震時以外の通常の挿入時に生じるものは「メカニカル抗力」として、地震時に追加で生じるものは「地震外力による抗力」として、

計算上考慮している。「地震外力による抗力」としては、水平動により制御棒が制御棒挿入経路の機器に接触する時間が長くなることや接触の強度が強くなることで摩擦力が増加するため、債務者はこれを考慮して制御棒挿入時間を算定している。これに対して、鉛直動の影響については、鉛直動により制御棒挿入経路の機器が上方に移動した場合には、摩擦力が増加し、制御棒の挿入を遅らせる効果が生じる一方で、鉛直動により制御棒挿入経路の機器が下方に移動した場合には、摩擦力が減少し、制御棒の挿入を早める効果が生じるところ、地震による鉛直動は、上下の揺れが交互に訪れるものであることから、地震による鉛直動が作用した場合、制御棒の挿入を遅らせる効果及び早める効果が同程度作用することになる。これらの力は、相殺されるため、「地震外力による抗力」として鉛直動の影響を考慮する必要はない。

(2) 解析コードの問題について

債務者は、本件発電所における基準地震動Ssを用いて制御棒挿入性の評価を行っており、債権者らが挙げるようなエルセントロ波等の一般の耐震評価に用いられる代表的な地震波を用いて評価を行っているわけではない。また、債務者は、落下開始時刻の想定を0.1秒ずつ(挿入時間が大きくなる時間帯については0.01秒ずつ)変更しながら、各時刻で落下を開始した場合(全部で約1200ケース)の挿入時間を繰り返し算定している。すなわち、債務者による制御棒挿入性評価は、基準地震動Ssにおいて最も厳しいタイミングで挿入が開始される場合を想定したものであるから、十分に安全が確保されている。

8 争点8 (基準津波策定の合理性) について

(債権者らの主張)

(1) プレート間地震による津波について

債務者は、南海トラフから琉球海溝沿いの領域については、南海トラフの 巨大地震 (Mw 9. 1) と琉球海溝北部から中部における波源 (Mw 9. 0) の2つ設定するだけで、南海トラフと琉球海溝が同時に連動するようなモデルを設定していないが、次のとおり、津波ガイドに沿って、南海トラフから琉球海溝までの連動(Mw9.6)を想定すべきであったというべきである。ア 津波ガイドについて

内閣府検討会は、「今回の検討は、一般的な防災対策を検討するための最大クラスの地震・津波を検討したものであり、より安全性に配慮する必要のある個別施設については、個別の設計基準等に基づいた地震・津波の推計が改めて必要である」と表明しているところ、「より安全性に配慮する必要のある個別施設」の代表格が原子力発電所であり、津波ガイドはその「個別の設計基準等」に当たることは疑いない。つまり、内閣府検討会は、自身が検討した最大クラスの地震・津波はあくまで一般防災用であり、原子力発電所の対策としては不十分であるとしているのである。

そして、津波ガイドは、「3.3 津波波源の設定」の「3.3.1 国内外の津波事例の考慮」において、「(2) 近地津波や遠地津波を対象とした津波波源の設定に当たっては、国内のみならず世界で起きた大規模な津波事例を踏まえ、津波の発生機構やテクトニクス的背景の類似性を考慮していることを確認する」、内閣府検討会では、「2011年東北地方太平洋沖地震及び世界の巨大地震の解析事例の調査に基づいて、駿河湾から日向灘までの範囲を対象とした南海トラフにおける最大クラスの津波波源モデル(Mw9.1)を設定している」とした上で、「ただし、この海域のテクトニクス的背景は2004年スマトラ沖地震と類似していることから、津波波源の領域は、南海トラフから南西諸島海溝まで含めた領域が対象となる。」としている。このような記載を踏まえると、津波ガイドは、原子力発電所の安全確保のためには、内閣府検討会の想定する富士川から日向灘までの約750㎞を震源域とする南海トラフの波源モデル「Mw9.1」の想定では不十分であり、南海トラフから琉球海溝までを含めたより

大きな波源域を想定することを求めているというべきである。

イ 国際基準について

平成27年8月31日にIAEAが公表した、福島第一原発事故につい て検証した技術文書からすれば、遅くとも1970年代の国際基準(国際 慣行はもっと以前から。)では、再来期間が1万年単位の確率で発生する 津波データを考慮することとなっているところ、福島第一原発では、その データがないことを埋め合わせるために、歴史記録のある最大の震度又は 規模に上乗せし、震源をサイトから最短距離に置くべきであった。また、 IAEAは、日本海溝がチリやアラスカと同様、環太平洋帯に位置するこ とから、地体構造上の類似性があるとし、1960年チリ地震(Mw9. 5) や1964年アラスカ地震(Mw9.2) と同程度の地震が日本海溝 で発生することを福島第一原発設計当初から考慮すべきであった旨述べて いる。このIAEAの技術文書の記載は、福島第一原発事故の原因を分析 したものとしてIAEAに加盟する世界の専門家が認めるものであり、我 が国において厳粛に受け止めるべきものである。しかし、債務者は、南海 トラフの巨大地震により発生する津波波源について、内閣府検討会のモデ ル (Mw9.1) をそのまま採用し、歴史時代に同領域で発生した最大規 模のものと見られている1707年宝永地震(M8.6)よりもマグニチ ュードで 0. 5 上乗せしたものを想定しているに過ぎない。宝永地震タイ プの地震は300ないし600年間隔で発生すると推定されており、マグ ニチュードを 0. 5 上乗せする程度では1万年単位の再来期間の地震像に なるとは到底いえないのであり、債務者の想定は国際基準に反するもので ある。

(2) 海域の活断層による津波について

ア 歴史記録の考慮を除外したことについて

津波ガイドでは、「歴史記録については、震源像が明らかにできない場

合であっても、規模が大きかったと考えられるものについて十分に考慮されていることを確認する」と記載されている。

そして、慶長豊後地震がM7.6程度の中央構造線を構成する複数の活断層の連動した地震であったこと、そして、本件原子炉の所在地にも6ないし10m程度の大きな津波をもたらしたことは、古文書から合理的に推測することができる。しかるに、債務者は、単に「記録がない」との理由だけで慶長豊後地震を基準津波策定の考慮要素から除外した。そのような経過で策定された基準津波は、債務者に都合の悪い数値を排除したものであり、津波ガイドに違反するばかりでなく、原子力発電所の安全性を全く確保しないものである。

イ 債務者の想定の問題点について

(ア) 債務者は、海域の活断層について中央構造線断層帯と別府-万年山断層帯の連動による400kmを超える長大な断層を考慮するとしながらも、結局は100km未満に区分された活断層について地震規模やすべり量を検討しているに過ぎない。しかし、長大断層については、断層の連動が長くなればすべり量が大きくなるという考え方もあり、どのような活断層につきどの程度ですべり量が飽和するかについては、確立した知見はない。本件原子炉については、敷地前面に最長480kmにわたって連動することが想定される中央構造線断層帯が走っているが、中央構造線断層帯が活動した際、すべり量は飽和するかもしれないが、飽和しないかもしれないのであり、原子力発電所の持つ潜在的危険性の大きさからすれば、一か八か、すべり量が飽和するモデルに賭ける、というような危険な選択は許されない。また、中央構造線の長期評価では、当麻断層一伊予灘西部断層の360km連動ケースで最大Mw8.4と想定されているところ、債務者はこれよりも長大な断層の連動を想定しながら、セグメントごとにMw7.1-7.6程度を想定するのみであり、これで十

分な津波想定ができるとは考え難い。

(イ) 債務者は7ないし8mの平均すべり量について,長大断層の過去のデータと比して十分保守的な値を設定している旨主張する。しかし,中央構造線の長期評価では,川上断層一伊予灘西部断層のずれにつき,最大値を讃岐南縁の数値と同じと仮定して2-7mとされている一方で,敷地前面海域の断層群+伊予セグメントのすべり量は,基本的に最大7.59mと設定されている。一般防災を想定している中央構造線の長期評価の最大値と同程度では,想定外の極小化が求められる原子力発電所の津波想定として十分保守的といえない。

また、債務者は、断層の不均質な破壊を考慮した津波評価の際、なぜか壇ほか(2011)によって敷地前面海域+伊予セグメントの平均すべり量を2.67mに引き下げ、アスペリティのすべり量を3ないし6m、アスペリティ上部のすべり量を最大8mに設定しているが、一様すべり量モデルでは平均すべり量を基本的に7.59mとしている上、債務者の採用する室谷ほか(2009)でも地表最大変位量は10mまで飽和しないことになっている。ところが債務者は、すべりの不均一を想定する際には平均すべり量を約3分の1に切り下げるモデルを採用し、地表最大変位量10mを考慮した不均一すべり分布モデルを検討していないため、不均質な破壊を考慮したケースの方が、これを考慮しないケースよりも想定津波が小さくなってしまっている。これは矛盾した設定であり、基準津波の引き上げによって防潮堤等による対策を避けるために、恣意的に行われている疑いがある。

(3) 津波予測の精度について

津波を数値予測するとき,誤差の要因は,①地震発生場所の誤算,②海 底隆起量の誤算,③津波伝播過程の誤算の3つあると考えられるところ, 津波予測の精度には2倍程度の誤差がある,換言すれば最小値と最大値と の間には4倍もの開きが生じ得るとされている。債務者の基準津波策定過程では、パラメータスタディをしても津波の予測は所詮「倍半分」に過ぎないという観点を計算に入れていないのであり、この点でも科学的安全性を備えたものとは到底いえないといわざるを得ない。

債務者は、土木学会(2002)によるパラメータスタディによって波源の不確定性によるばらつき等が十分に評価できる旨主張するが、土木学会の津波評価部会主査として土木学会(2002)をとりまとめた東北大学名誉教授首藤伸夫自身が、津波予測精度は倍半分であり、これはパラメータスタディでもカバーできない旨述べていることを無視している。福島第一原発事故後においては、同じような事故を二度と起こさないために、ばらつきや予測精度の誤差を定量的に考慮できる基準津波の策定が求められているというべきであるが、債務者による基準津波の策定過程ではそのような考慮がなされていない。

(債務者の主張)

(1) プレート間地震による津波について

ア 津波ガイドについて

津波ガイドは、プレート間地震に起因する津波波源の設定について、「対象海域における既往地震の発生位置や規模を参考に、プレート境界面の領域区分(以下「セグメント」という。)を設定し、セグメントの組合せにより、津波波源の位置、面積、規模を設定していること」、「セグメントの組合せに応じた津波波源の総面積に対し、地震の規模に関するスケーリング則に基づいてモーメントマグニチュード及び平均すべり量を設定していること」を求めているが、想定すべき地震規模を具体的数値で定めてはいない。

確かに、津波ガイドは、プレート間地震に起因する津波波源を設定する 対象領域の1つとして南海トラフから琉球海溝沿いの領域を例示し、当該 領域の規模の最大値として「Mw9.6程度」と記述しているが、その「地震規模は参考値である。」と明記している。つまり、津波ガイドは、基準津波を策定するにあたっては、南海トラフから琉球海溝沿いの領域にプレート境界面のセグメントを設定し、その組合せにより波源の位置、面積、規模を想定しているかどうか、当該セグメントを組み合わせて設定した波源の総面積に相応のMwが設定されているかどうかを確認すると定めているにすぎず、Mw9.6の地震を想定するよう求めるものではなく、債権者らは、津波ガイドの理解を誤っている。

また、債務者は、南海トラフから南西諸島海溝沿いの領域において、南海トラフ、琉球海溝北部、琉球海溝中部及び琉球海溝南部の各セグメントを設定し、固着域及び構造的な境界に関する分析結果から、南海トラフから琉球海溝までの領域において、各領域を横断するような破壊伝播を考慮する必要はないと考えた上で、琉球海溝北部から琉球海溝中部までの範囲にMw9クラスの津波波源を設定した。そして、その総面積に対して、地震の規模に関するスケーリング則に基づいてMw及び平均すべり量を設定しており、津波ガイドを踏まえた適切な評価を行っている。

よって、債務者の評価を過小であるとする指摘は当たらない。

イ 国際基準について

債権者らは、IAEAの文書等から、Mw9.6を想定すべきであると主張する。しかし、債権者らの主張は、南海トラフの地域的な特徴等について詳細な検討を行うことなく、単純に世界の既往最大クラスの地震と比較して、Mw9.1の地震規模の想定では過小であると非難するものであり、科学的に合理性を有する主張とはいい難い。

南海トラフの巨大地震は、内閣府検討会が、「あらゆる可能性を考慮した最大クラスの巨大な地震・津波を検討していくべきである」との考え方に基づき、発生し得る最大クラスの地震・津波として想定したものであり、

「巨大地震の中でも最大級のものであること」が確認されている。また、 内閣府検討会は、「今回の推計結果は、決して、南海トラフ沿いにおいて 次に起こる地震・津波を予測して検討したものではない」、「現在の科学 的知見の下で、今回推計し設定する最大クラスの地震・津波の発生確率、 そしてその発生時期の予測をすることは不可能に近い」とも述べており、 この点からも、発生し得る最大規模の巨大地震・津波であることが読み取 れる。

したがって、南海トラフの巨大地震を想定した債務者の津波評価が過小 であるかのように述べる債権者らの主張は当を得ない。

(2) 内陸地殼内地震による津波について

ア 慶長豊後地震について

別府湾沿岸地域には慶長豊後地震に伴う津波の記録が残されているものの、本件敷地周辺地域において、慶長豊後地震に伴う津波高さを推定できる記録は残っていない。そうであるところ、豊後地震に伴う津波を含め、別府湾沿岸地域の津波に最も大きな影響を及ぼすと考えられる別府 – 万年山断層帯が正断層であるのに対し、本件敷地前面の伊予灘に位置する中央構造線断層帯は横ずれ断層であり、本件敷地における津波高さを、別府湾沿岸地域における津波の記録と同程度なものとして推定するのは合理性に欠ける。さらに、大分県には津波被害を記す古文書が数多く残っているのに対し、伊予灘沿岸の、愛媛県、山口県及び広島県には残されていないことなども踏まえると、実際に伊予灘沿岸には津波被害は発生しなかったと考えるのが合理的である。

イ 海域の活断層について

(ア) 債務者は、地震規模を算出するのに用いる経験式(武村式(1998))の 適用範囲が最大で断層長さ85kmとされており、津波波源を想定する断 層長さ全長に対して適用するのは適当ではないことから、当該経験式の 適用範囲等を踏まえ、断層長さが概ね80㎞を超えない範囲で地震規模を想定する断層を区分することとし、地震学・地質学的見地から区分の仕方について検討した。そして、別府湾ー日出生断層帯と敷地前面海域の断層群との間で地震環境が異なること(前者が正断層であるのに対し、後者は横ずれ断層であることなど)から、別府湾ー日出生断層帯と四国側の中央構造線断層帯(敷地前面海域の断層群+伊予セグメント)とを地震規模を想定する上で区分することとし、断層長さを区分してモデルを設定する手法を用いた。このように長さを区分して地震規模を求める手法自体は、中央構造線の長期評価が採用する方法を踏まえたものであり、手法として何ら合理性を欠くものではない。

(イ) 債権者らは、債務者が断層長さ130kmの区間において設定した波源 モデルは、地震本部が示す360km連動ケースで最大Mw8.4と想定 していることと比較して、過小評価であると主張する。しかし、債務者 は、中央構造線断層帯について、地震動評価においては、400㎞を超 える連動を想定するが、津波評価においては、津波の波源となり得ない 陸域を除く海域の活断層部分の断層長さ約130kmの区間を想定するも のであり、両者の地震規模を単純に比較するのは適切ではない。また、 津波評価においてはすべり量(変位量)の観点が重要であるところ,室 谷ほか(2010)及び室谷ほか(2009)の知見からは3ないし5mの平均すべ り量を設定すべきと考えられ、四国西部の中央構造線断層帯の1回あた りのすべり量は、堤・後藤(2006)の知見から2ないし4mとされている ところ、債務者は7ないし8mの平均すべり量を設定しており、長大断 層の過去のデータと比して十分保守的な値を設定している。そして、室 谷ほか(2010)等の知見が十分な信頼性を有するものであることは原子力 規制委員会における審査でその妥当性が認められていることなどから、 債権者らの過小評価という指摘は当たらない。

また、債権者らは、債務者が、断層の不均質な破壊を考慮した津波評価を行うにあたって壇ほか(2011)の手法を用いたことについて、「恣意的」であると非難する。しかし、断層の不均質な破壊を考慮した津波評価とは、本件原子炉の津波評価に係る原子力規制委員会による審査において、地震動評価と津波評価とで断層モデルの設定に違いがあることによる影響(すなわち、地震動評価と整合的なモデルを設定した場合の津波の大きさ)を評価するよう求められたことを受け、地震動評価と整合するようアスペリティの分布等を考慮したモデルを設定して評価を行ったものであるところ、そのようなモデルを設定する際に、債務者の地震動評価において基本として用いている壇ほか(2011)の手法を用いたのは自然なことであり、何ら恣意的なものではない。

そもそも、債務者が津波評価(断層の不均質な破壊ではなく一様なすべり面を想定する評価)においてすべり量の想定に用いている武村式 (1998) は、断層長さという線的な情報に基づいてすべり量を設定する手法であり、断層の不均質な破壊を考慮した評価に必要な断層パラメータを設定する際には用いることができない。債権者らの主張は、これらの点を理解せずになされたものであり、失当である。

(3) 津波予測の精度について

債務者は、土木学会(2002)の手順に基づいて敷地の津波評価を行っているところ、「後述するパラメータスタディによって設計想定津波の評価を行えば、既往津波の痕跡高を上回る十分な高さの津波が設定されるものと考えられる。」とされ、さらには、「本手法により得られる最大水位上昇量は、波源の不確定性によるばらつき等が考慮できる十分大きな津波高として評価できると考えられる。」とされるように、土木学会(2002)の手法は、津波予測精度の誤差を考慮した評価を行うことが可能なものであり、同手法に基づいて計算される設計想定津波は、平均的には既往津波の痕跡高の約2倍となっ

ていることが確認されている。したがって、土木学会(2002)が示す適切な手法に基づき津波評価を行うことによって、債務者らの評価はばらつきを考慮した評価となっているといえる。その上で、債務者は、そうした誤差やばらつきをカバーするよう、津波評価において、海底隆起量を保守的に想定するなど、評価精度を向上させる努力や不確かさの考慮を行っている。

9 争点9 (火山事象の影響による危険性) について

(債権者らの主張)

(1) 立地評価に関する火山ガイドの合理性について

現在の科学的技術的知見をもってしても原子力発電所の運用期間中に検討対象火山が噴火する可能性やその時期及び規模を的確に予測することは困難であるにもかかわらず、立地評価に関する火山ガイドの定めは、噴火の時期及び規模が相当前の時点で的確に予測できることを前提としている点において、その内容が不合理である。したがって、火山ガイドを前提とする本件原子炉の立地評価も不合理というべきである。

(2) 立地評価について

ア 立地不適であること

町田・新井(2011)によれば、設計対応不可能な火山事象である約9万年前に阿蘇カルデラで発生した阿蘇4噴火による火砕物密度流が豊後水道を越え、佐田岬半島の根本付近まで到達したと考えられるから、本件原子炉は立地不適というべきである。

イ 町田・新井(2011)は信頼できること等

そもそも大規模な火砕流は、ジェットコースターのように斜面を乗り越えながら流動する厚さ数百m、温度600℃以上、時速100kmにもなる高温・高速の粉体流であるところ、大規模カルデラ噴火の場合、火砕流は噴出口から概ね同心円状に広がることが知られており、ある程度の地形を乗り越えて斜面なども覆い尽くしたとされる。現在確認できる分布範囲が

平坦地又は谷間にあるのは、尾根や斜面部分は風化・浸食等によって削られてしまい、平坦地又は谷間部分だけが浸食されずに残ったためである。また、火砕流にとっては、海域・水域は障害とならないから、火砕流のうち、密度が大きい部分には沈む部分もあるが、比較的密度が小さい部分は海面を滑るように走ったと考えられている。さらに、一般に、温暖な地域ほど火山ガラスや斑晶鉱物は粘土化、風化しやすく、本件原子炉敷地周辺については、佐田岬半島が急斜面からなる山地の連続であり、海水や風雨で浸食されやすいことなどからすれば、本件原子炉敷地に火砕流が到来したが、風化・浸食によって火砕流堆積物が残存していないという可能性も多分に存在する。このような可能性を考慮していない点は、本件原子炉が災害の防止上支障がないといえるか否かにとって看過し難い過誤・欠落といえる。

ウ 債務者のシミュレーションは過小評価があること

債務者の想定の極めて重大な問題点の一つは、余りにも的外れなシミュレーション結果を信頼しているという点である。債務者は、阿蘇カルデラから本件敷地方向への火砕流シミュレーション評価を実施し、保守的な火砕流シミュレーションの結果でも敷地まで火砕流が到達しないとしている。しかし、債務者が解析に用いたTITAN2Dという解析ソフトは、阿蘇4噴火のようなカルデラ噴火による大規模火砕流に用いることを全く想定しておらず、これを阿蘇4噴火による火砕流の解析に用いるのはあまりにも不適切であるから、そのシミュレーション結果は全く信用するに足りない。

(3) 降下火砕物の最大層厚について

ア VEI7及びVEI6クラスについて

債務者は、阿蘇カルデラにおける「後カルデラ噴火ステージ」最大の噴火たる草千里ヶ浜軽石(噴出物量2.39km³), 九重山における九重第

一軽石(噴出物量 $5 \, \mathrm{km}^3$)といった過去の噴火を検討し、本件原子炉敷地における降下火砕物の最大層厚を $1.5 \, \mathrm{cm}$ と想定している。しかし、姶良カルデラや鬼界カルデラにおける $V \, \mathrm{EI} \, 7$ クラスの破局的噴火の活動可能性はもとより、阿蘇カルデラ、加久藤・小林カルデラ、阿多カルデラが $V \, \mathrm{EI} \, 7$ クラスの噴火をする可能性も否定できない。債務者がこれらの火山の $V \, \mathrm{EI} \, 7$ クラスの噴火の可能性について検討した経過は、九州電力株式会社(以下「九州電力」という。)が川内原子力発電所について行ったものとほとんど同じであり、その評価が不合理であることは明白である。債務者は、九州の $5 \, \mathrm{cm} \, \mathrm{c$

イ VEI5クラスについて

債務者は、VEI5クラスの噴火についても、噴出量5km³の九重山の約5万年前の噴火を検討したとする。しかし、VEI5クラスにも噴出量 1km³から10km³までの幅があり、噴出量が5km³でとどまるという保証はない。確かに、九重山は5km³程度の噴出量であったが、阿蘇山においてはVEI7の噴火が起こっているのであり、VEI5クラスの中でも最大級である噴出量10km³の噴火が起こる可能性は十分に存在する。九重山と本件原子炉の距離は約110km、阿蘇山と本件原子炉の距離は約130kmで、阿蘇山で九重山の噴火の倍の規模の噴火が起これば、本件原子炉に15cmを上回る火山灰が降下する可能性が存在するというべきである。

(4) 降下火砕物の大気中濃度について

ア 大気中濃度の想定が過小であること

(ア) 10倍以上の過小評価があること

債務者は、非常用ディーゼル発電機の吸気フィルタの閉塞までに要す

る時間を算出するに当たり、降下火砕物の大気中濃度を $3241\mu g/m$ 3 として、閉塞所要時間を19.8時間としている。この $3241\mu g/m$ 3 という数値は、アイスランド南部のエイヤヒャトラ氷河にある火山噴火において、約40km離れたヘイマランド地区における大気中降下火砕物濃度(24時間観測ピーク値)とされる。

しかし、このアイスランド南部のエイヤヒャトラ氷河にある火山噴火で、ヘイマランド地区で観測された数値は、①層厚がわずか約5mmにすぎず、②大規模噴火のあった4月からは3か月ほど、最後の噴火から見ても3週間以上経過した後の再飛散値であり、③降下火砕物中直径10μm以下の浮遊粒子(PM10)のみの濃度の観測値である点で、極めて過小に評価するものである。

また、1980年の米国西部のセントへレンズ火山の噴火(VEI5)における同火山から135km離れた地表付近地点における24時間平均総浮遊粒子状物質濃度の観測値は、債務者の想定値を10倍以上上回っているし、アイスランド南部2010噴火のデータを用いて債権者らが試算したところ、同様の噴火によって150mm/日の降灰が本件原子炉に降り積もった場合には、大気中火山灰濃度は、債務者の主張の84倍以上となると想定される。

しかるに、債務者は、上記の想定にもかかわらず吸気フィルタが閉塞 しないこと、非常用ディーゼル発電機が損傷しないこと等について正し い科学的な認識に基づいて具体的に主張、疎明を尽くしていない。

(イ) 一般財団法人電力中央研究所の報告について

一般財団法人電力中央研究所(以下「電中研」という。)が平成28年4月に発表した報告「数値シミュレーションによる降下火山灰の輸送・堆積特性評価法の開発(その2)-気象条件の選定法およびその関東地方での堆積量・気中濃度に対する影響評価」によれば、富士山の宝永

噴火を素材として降下火砕物の大気中濃度に関するシミュレーションをすると、横浜で最大1000mg/m³に達するとされている。この数値は、ヘイマランド地区における上記観測値の約300倍、セントヘレンズ火山の噴火における上記観測値の約30倍に当たる。このことから、従来の大気中濃度の想定がいかに著しい過小評価であったかが分かる。

イ 非常用ディーゼル発電機への影響について

- (ア) 降下火砕物によるフィルタ閉塞について
 - a 債務者は、非常用ディーゼル発電機のフィルタ閉塞までに要する時間について約19.8時間とした上で、仮にフィルタが目詰まりを起こしたとしても、吸気フィルタは2系統あり、片方の系統を停止した上で、要員3ないし5名で約1時間で交換できるとする。そして、仮に大気中火山灰濃度に10倍の過小評価があり、閉塞までの時間が10倍速くなるとしても閉塞までの時間は約2時間であるため、フィルタが目詰まりを起こす前に交換を行うことができるとしている。

しかし、債務者が指摘する過小評価の程度が「10倍」にとどまるという合理的根拠はないばかりか、少なくとも80倍以上の過小評価があると考えられる。そして、約80倍の過小評価ということになれば、フィルタ閉塞時間は0.25時間程度(15分程度)となるのであり、フィルタ交換は間に合わず、目詰まりを起こすことになる。また、電中研の上記報告を前提とすると、大気中濃度は従来の想定の約300倍以上となるから、フィルタ閉塞までの時間はわずか4分弱の時間しかないこととなる。要するに、ひとたび降灰が始まれば、間もなく非常用ディーゼル発電機はフィルタ目詰まりを起こして機能喪失するのである。

さらに、国立研究開発法人産業技術総合研究所(以下「産総研」という。)の地質調査総合センター研究報告によると、70 mg/m³では

178分,700mg/m³では26.3分,7000mg/m³ではわずか3.5分でフィルタが機能喪失したというのであり,実際の吸気設備,設置状況等の違いがあるとはいえ,このような計算結果が得られた以上,これらの結果を踏まえてもなお原子力発電所が安全であることの確証がない限り,本件原子炉を稼働させるべきではない。

b 債務者は、火山灰の降下に伴う作業の困難性を全く考慮に入れずに フィルタ交換に要する時間を1時間と見積もっている。

しかし、気象庁も、降雨時にはわずか5mmの降灰で、降雨がなくても5cmの降灰で、道路は通行不能となると想定しているし、6mmの降灰によって自動車のエンジンが故障した例も報告されている。したがって、そもそもフィルタ交換のために現場にたどり着ける保証すらない。また、防塵マスクを装着しての作業は、視界部分に火山灰が付着し、これを除去するために何度も作業中断を余儀なくされる可能性があるし、非常用ディーゼル発電機のフィルタ交換を行う必要が生じるのは外部電源が喪失した場合であるから、夜間ともなれば暗中での作業を強いられる可能性もある。債務者はこのような現実のリスクを考慮しておらず、仮に、フィルタの閉塞時間を2時間と仮定しても、フィルタ交換が間に合うかは疑問である。

- (イ) 降下火砕物による閉塞・摩耗について
 - a 相当量の火山灰の侵入が想定されること

火山灰は風や吸気による流れなどの影響を受けて容易に舞い上がったり、吸い寄せられたりする性質を持っている。特に、粒径の小さい浮遊性粒子については、たとえ吸気口が下向き構造になっていたとしても、相当量が吸い込まれて非常用ディーゼル発電機の機関内に侵入する可能性が十分にある。本件原子炉には、VEI7クラス以上の超巨大噴火により、債務者が想定する厚さ15cmをはるかに上回る降下

火砕物が到来する危険がある。

なお、債務者は「粒径120μm以上において約90%捕獲」としているが、これは、裏返せば、120μm以上の降下火砕物の約10%は吸気フィルタに捕獲されないということであるし、粒径120μmより小さい降下火砕物についてはそれ以上に侵入するという意味である。

b 間隙への侵入可能性について

債務者は、シリンダライナとピストンリングとの間隙(数μm~十数μm)は非常に狭いため、ここに降下火砕物が入り込むことはほとんどない旨主張する。しかし、侵入を想定すべき間隙として、上記間隙のほか、ピストンに掘ってあるピストンリングのはまるべきピストンリング溝と、そこにはめられているピストンリングそのものとの間の間隙(サイドクリヤランス)も存在する。サイドクリヤランスは、新品時においても、100ないし数十μm以上の間隙となっているところ、この間隙に降下火砕物が侵入する可能性は十分に存在し、その場合には摩耗や焼付きなど、非常用ディーゼル発電機の故障(機能喪失)の原因となる。債務者の反論は不十分である。

c 降下火砕物の硬度について

債務者は、仮に間隙に降下火砕物が入り込む場合であっても、降下 火砕物は破砕し易いため、ピストンリングとシリンダライナとの接触 により破砕されると主張する。しかし、この点について、債務者は、 「降下火砕物は破砕し易く、硬度が小さい(モース硬度で5程度)の に対し、シリンダライナ及びピストンリングはブリネル硬さ230程 度の耐摩耗性を有する鋳鉄材である」とするところ、モース硬度5を ブリネル硬さに換算すれば370程度であり、シリンダライナ及びピストンリングのブリネル硬さ230よりも硬いことからすれば、破砕 し易いとはいえない。 また、債務者は、黄砂と降下火砕物とを比較して前者の方が硬度が大きいにもかかわらず、実際上黄砂によりディーゼル発電機が故障することはないとも主張するが、両者は科学的に見れば大気中濃度が余りにも異なり、到底比較できない。債務者は、大気中濃度が数十~数百mg/m³となるような場合でも固着が起こらないという実験も実証もしておらず、降下火砕物による摩耗・固着からの安全性を確認できていない。

d 焼付きの可能性について

債務者は、シリンダは常時冷却されていることに加え、膨張行程は 0.075秒にすぎないことなどから、シリンダ内の温度上昇は極めて短時間かつ燃料噴射部近傍の局所的な現象にすぎず、焼付きは生じないと主張する。しかし、ディーゼル発電機のシリンダ内は、膨張行程において瞬間最高温度2000℃にも達するのであり、仮にそれが債務者の主張するように一瞬のことであったとしても、それが連続して起こるうちに降下火砕物の融点である1000℃を上回り、降下火砕物が溶融することが十分に起こり得る。また、大気中火山灰濃度が債務者の想定よりもはるかに濃いことから、債務者が想定するよりもはるかに多量の降下火砕物がシリンダ内に侵入する結果、降下火砕物の間隙への侵入、溶融の量も極めて多量となり、多量に溶融した降下火砕物が固化すれば、容易に破砕されないものとなり得るのであり、焼付きの危険性がある。

(債務者の主張)

(1) 立地評価について

ア 火砕流到達の可能性がないこと

債権者らは、本件発電所についても、火山ガイドの定めに沿った立地評価がなされているとして、当該評価が不合理だと主張する。しかし、そも

そも、本件発電所の立地評価では、阿蘇4噴火の際にも、当該噴火による 火砕物密度流は本件敷地に到達していないことを詳細な調査によって確認 している。すなわち、債務者は、本件敷地に阿蘇4火砕流が到達した可能 性を確認するため、佐田岬半島の中で、堆積物が保存されやすい、すなわ ち風化・浸食の影響を受けにくいと考えられる地点を選定した上で、地表 踏査又はボーリング調査を行い、阿蘇4火砕流堆積物がないことを確認し ている。債務者は、このような地表踏査、ボーリング調査に加えて、本件 敷地と阿蘇カルデラの間には、佐賀関半島、佐田岬半島等の地形的な障害 があること及びこの地形的な障害に関する火砕流シミュレーションによる 検証を踏まえ、本件敷地に阿蘇4火砕流が到達していないと判断したもの である。

イ 阿蘇4噴火のような破局的噴火の可能性がないこと

そもそも阿蘇4噴火のような甚大な被害をもたらす超巨大噴火は、日本列島の火山においては数万年から十数万年に1回程度の極めて低い頻度の火山事象であるところ、阿蘇カルデラの地下のマグマ溜まりの状況からも、阿蘇カルデラにおいて阿蘇4噴火と同規模の噴火が本件発電所の運用期間中に生じる可能性は十分に小さいと考えられる。すなわち、阿蘇カルデラの地下には、深さ2ないし3kmの浅部にマグマ溜まりがあるものの、当該マグマ溜まりは小規模であって、阿蘇4噴火と同規模の噴火を起こすような状況ではないと考えられる。したがって、本件敷地に火砕流が到達して本件原子炉に影響を及ぼすことはないとした債務者の判断は合理的である。

(2) 降下火砕物の最大層厚について

債務者は、本件発電所において考慮すべき降下火砕物の厚さを評価するにあたり、本件発電所の地理的領域内にある火山のうち、九重山の約5万年前の噴火による火山灰の堆積物が四国南西端の高知県宿毛市で確認されていることから、同噴火による本件発電所への降灰の有無について地質調査による

検討を行った。その結果から、本件敷地付近への火山灰の降下厚さがほぼりcmであることを確認した上で、現在の気象条件を考慮して本件敷地にどのような降灰が想定されるかを降下火山灰シミュレーションにおいても検討し、偏西風がほぼ真西で安定する季節は本件敷地における降下厚さはほぼりcmと評価されるものの、風向きによっては本件敷地において厚さ数cmの降下火山灰が想定されることを踏まえ、原子力安全に対する信頼向上の観点から十分に保守的に評価し15cmとしたものである。この評価が適切なものであることについては原子力規制委員会の審査で確認されており、同評価が過小評価であるという指摘は当たらない。

(3) 降下火砕物の大気中濃度について

ア 大気中濃度の想定について

債務者は、上記試算において、アイスランド南部のエイヤヒャトラ氷河で平成22年4月に発生した火山噴火地点から約40km離れたヘイマランド地区における大気中の降下火砕物濃度(24時間観測ピーク値)の観測値(3241㎏/㎡)を用いて、吸気フィルタの閉塞に至るまでの時間の試算を行った。これは、当該試算に用いる降下火砕物の大気中濃度については、①噴火の規模がある程度大きいこと、②火口から観測点までの距離が本件発電所と評価対象となる九重山との距離(約108km)と比較的似ていること、③地表レベルで観測されていることなどが条件として考えられるところ、上記観測値は、①VEI4以上の大規模噴火であること、②噴火口より約40km程度離れたヘイマランド地区での観測値であり、本件発電所と評価対象となる九重山との距離に比べると近くなるため、保守的な値として用いることが可能であること、③地表レベルで観測された大気中濃度であることから、これらの条件に照らして適切なものとして当該観測値を試算に用いたのであり、過小評価であるとの債権者らの批判は当たらない。

なお,原子力規制委員会は、セントヘレンズ火山の噴火に伴う火山灰濃度の観測記録などの知見について規制への適用を検討しており、債務者としても、これらの知見について適切に対応していく予定である。

イ 非常用ディーゼル発電機への影響について

(ア) 降下火砕物によるフィルタ閉塞について

債務者は、非常用ディーゼル発電機の外気吸入口を下方向から吸気す る構造としていることから、降下火砕物は吸気口に吸い込まれにくく、 吸気口に設置している吸気フィルタも閉塞しにくい。また、吸気フィル タの交換は、要員3ないし5名で1時間程度で行うことができるから、 降下火砕物の影響を考慮しても、非常用ディーゼル発電機の機能を維持 することができる。そして、吸気フィルタ交換作業を行う時間的余裕が あることを確認するため行ったものが吸気フィルタ閉塞時間の試算であ り、当該試算は、下方向から吸気することによって降下火砕物を吸い込 みにくい構造となっていることや、降下火砕物の粒子の粒径の違い(粒 径が大きくなれば、吸い込まれにくくなり、吸気フィルタにも付着しに くくなる。)も無視して一様に付着するとした簡易なものであり、その 試算結果は約20時間である。仮に同様の試算方法において、債権者ら の主張を踏まえて10倍の大気中濃度を用いたとしても吸気フィルタが 閉塞するまでの時間は2時間程度であり、フィルタ交換に要する時間は 1時間程度であることからフィルタ交換は可能であり影響が生じること はない。

(イ) 降下火砕物による閉塞・摩耗について

a 降下火砕物の侵入可能性について

降下火砕物は非常用ディーゼル発電機の機関内に容易に侵入できる 構造にはなっていないものの、吸気フィルタに捕集されなかった粒径 の小さな降下火砕物が非常用ディーゼル発電機の機関内に侵入する可

能性はある。このため,債務者は,降下火砕物の非常用ディーゼル発 電機の機関内への侵入等による影響を評価し、機器の機能を損なわな いことを確認している。すなわち、吸気フィルタを通過した降下火砕 物は、過給機 、空気冷却器に侵入するものの、機器の間隙は非常用 ディーゼル発電機の機関内に侵入する降下火砕物の粒度(十数μμ程度) に比べて十分大きい(過給機の狭隘部は370㎞,空気冷却器の狭隘 部は2360µm)から、これらの機器が閉塞する可能性はなく、吸入 された降下火砕物の大半は排気ガスとともに外気に放出される。シリ ンダライナとピストンリングとの間隙(数μμないし十数μμ)は非常に 狭いため、ここに降下火砕物が入り込むことはほとんどなく、仮にこ の間隙に入り込んだ場合であっても、降下火砕物は破砕し易いため、 ピストンリングとシリンダライナとの接触により破砕され、間に常に 流れている潤滑油と共にクランクケース内へ降下する。また、降下火 砕物は破砕し易く, 硬度が小さい(モース硬度5程度)のに対し, シ リンダライナ及びピストンリングはブリネル硬さ230程度の耐摩耗 性を有する鋳鉄材であることなどから、降下火砕物による摩耗が生じ る可能性は小さく、容易に運転へ影響を及ぼすことはない。

b 降下火砕物の硬度について

債権者らは、吸気フィルタを通過した微細な降下火砕物が非常用ディーゼル機関の機関内に侵入した場合の影響について、降下火砕物の硬度(モース硬度 5)は、シリンダライナとピストンリングの硬度(ブリネル硬さ 2 3 0 程度)よりも硬く、降下火砕物が非常用ディーゼル発電機の機関を摩耗させる旨を主張する。しかし、モース硬度とブリネル硬さは双方の尺度が異なるため単純に比較できない上、降下火砕物が非常用ディーゼル発電機の機関内に侵入したとしても同機関内を摩耗させることがないことは、日本において毎年春頃に多く観測

される黄砂 (その主成分は石英でモース硬度は7である。) 現象下に おいて非常用ディーゼル発電機が健全に運転されていることからも明 らかである。

c 焼付きの可能性について

債権者らは、シリンダ内の温度は膨張行程において降下火砕物の融点(1000°)を超過し、溶融した降下火砕物により焼付きが生じる可能性について言及する。

しかし、シリンダの外側には冷却水(シリンダ冷却水)が循環し、 常時冷却していることに加え、非常用ディーゼル発電機の機関は、吸 入,圧縮,膨張,排気の4行程1サイクルを経て回転力を得るのであ るが、例えば膨張のような1行程の所要時間は、わずか0.075秒 にすぎず、かつ、膨張行程でのシリンダ内の温度上昇は着火した瞬間 (膨張行程が始まる最も初期の段階) がほぼピークであり, その後膨 張による外部へのエネルギー伝達と排気行程への移行に伴って速やか に温度は低下するため、シリンダ内の温度上昇は極めて短時間かつ燃 料噴射部近傍の局所的な現象にすぎない。そして、非常用ディーゼル 発電機の機関内に侵入する降下火砕物はわずかであること、仮に膨張 行程でシリンダ内の温度が1000℃を超えて非常用ディーゼル発電 機の機関内に侵入した降下火砕物の溶融が生じたとしても、上記のと おり極めて短時間の局所的な現象であり、シリンダ内の温度はすぐに 降下火砕物の融点より低い温度(債権者らが指摘する圧縮行程の50 $0 \sim 600$ C) にとどまり、降下火砕物は再び固化すること、固化し た降下火砕物は破砕し易いことなどを踏まえれば、降下火砕物の溶融 は一時的なものであり、結局のところは固化した降下火砕物は破砕さ れて、若しくは、破砕されずに排気ガスとともに放出され、又は、潤 滑油とともに洗い流されクランクケースに落下することになる。

したがって、債権者らが主張するように、ピストンリングの焼付き 及びピストンの固着が生じることは考え難い。

10 争点 10 (シビアアクシデント対策の合理性) について (債権者らの主張)

(1) 可搬式設備での対応等について

本件原子炉のシビアアクシデント対策は、①気象条件等により作業が困難となるなど不確実な可搬式設備での対応を基本としていること、②福島第一原発事故の十分な分析をせずに策定されたものであること、③シビアアクシデント時の環境条件を的確に把握できることが重要であり、少なくとも原子炉水位計等の計器がシビアアクシデント条件下で作動することが確認される必要があるが、それがされていないこと、④基準地震動を超える地震等の外部事象を想定した対策となっていないことからすれば、深刻な災害が万が一にも起こらないといえる程度の対策となっているとは到底いえず、このようなシビアアクシデント対策をもって「災害の防止上支障がない」とは認められない。

(2) 水素爆発対策について

本件原子炉において、シビアアクシデントの際に格納容器内での水素爆発を防止するための対策としては、原子炉圧力容器の破損箇所から溶融炉心が落下し始めるまでに、格納容器スプレイを作動させて原子炉下部キャビティを十分な水位まで水張りする。それにより、溶融炉心を冷却することにより、溶融炉心・コンクリート相互作用(以下「MCCI」という。)によるコンクリート侵食の進行と水素発生量を抑制することなどが考えられている。そして、債務者は、解析コードMAAPを使用してMCCIの評価を行い、MCCIに伴う水素発生量を無視して、ジルコニウム反応量を全炉心存在量の75%として水素濃度を求めている。しかし、解析コードMAAPには、MCCIの進行を過小評価する傾向があること、水張り条件での解析コード検

証が実施されていないこと、注水開始遅れ時間の感度解析が不適切であることなどの問題点があるため、解析コードMAAPを使用してMCCIの評価を行うに際しては、感度解析等による不確かさの影響評価を行い、その結果に基づいて水素爆発防止対策の有効性判断をする必要がある。このような解析コードMAAPの不確かさを考慮して、深刻な災害を万が一にも起こしてはならないという立場に立つのであれば、本件原子炉においても、全炉心内のジルコニウム100%が水と反応すると仮定する必要がある。全炉心内のジルコニウム100%が水と反応するとして、本件原子炉について算定すると、格納容器内の水素濃度は最大14.5%となり、爆轟防止の判断基準値13%を上回る。つまり、ジルコニウム反応量を100%とすると、本件原子炉は水素爆轟の防止基準を満足できないことになるから、水素爆発による格納容器の損壊とそれに伴う放射性物質の大量放出という具体的危険性が認められることになる。

(3) 水蒸気爆発対策について

本件原子炉のシビアアクシデント対策は、溶融した核燃料を水プールに落下させるという方法を採用しており、その際に水蒸気爆発の危険性を一切除外している。水蒸気爆発の発生条件の不確かさ、水蒸気爆発が起きた場合の破滅的被害を考慮して、深刻な災害を万が一にも起こしてはならないという立場に立つのであれば、水蒸気爆発の危険性を一切除外するという判断の下に策定された本件原子炉のシビアアクシデントが「災害の防止上支障がない」ということは到底できない。

債務者は、水蒸気爆発の実験データとして、財団法人原子力発電技術機構がカザフスタン国立原子力センターにおいて行った実験(以下「COTELS」という。)、欧州 JRC(Joint Research Center)がイスプラ研究所において行った実験(以下「FARO」という。)及び欧州 JRCがイスプラ研究所において行った実験(ただし、あえて外乱を与える実験を実施した

もの。以下「KROTOS」という。)のものを挙げているが、なぜか6回のうち4回は激しい自発的な水蒸気爆発が発生した韓国原子力研究所(以下「TROI」という。)による実験結果には言及していない。実機が炉心溶融を起こすと、核燃料と溶けた金属が混ざって、百数十トンの溶融物が生じる。このうちどれだけの溶融物が粗混合過程に寄与するかは不確かであるが、少なくとも数百㎏から百トン程度まで考えておく必要があるのに対して、実験は2㎏から約180㎏程度の溶融物で実施されているにすぎない(水蒸気爆発は、落下する溶融物の量が多いほど発生しやすいことから、他の条件が同じ場合、小規模な実験に比べると実機のほうが水蒸気爆発を起こしやすい。)。債務者が無視しているTROI装置では10~20kgの試料を用いており、約3kgの試料を用いているKROTOSより規模の大きい実験である。しかも、TROIによる実験は、KROTOSなどよりも最近行われている。このように実験の規模や時期から考えてもTROIの結果を評価しなくてよい理由はない。

(4) 免震重要棟について

設置許可基準規則は、福島第一原発等において免震重要棟が果たした役割を受けて、緊急時対策所の設置を義務付けているところ(61条),設置許可基準規則解釈は、「基準地震動による地震力に対し、免震機能等により、緊急時対策所の機能を喪失しないようにする」ことを要求している。

しかるに、債務者は、基準地震動の引上げによって、免震機能を有する緊急時対策所(免震重要棟)の設置が困難になったことから、従来の計画をあきらめ、耐震機能しか有しない緊急時対策所を設置する計画に変更した。しかし、「免震」は「建物内の揺れを軽減する」という利点があり、建物内における安全性確保という点では「耐震」よりも「免震」の方が優れている。余震が続く中でも事故時の対応が求められる緊急時対策所においても、免震機能が求められることは当然であり、福島第一原発等において免震重要棟が

果たした役割からしても、深刻な災害を万が一にも起こしてはならないという立場に立つのであれば、免震機能を有する緊急時対策所(免震重要棟)の 設置が求められると解すべきである。

(5) 特定重大事故等対処施設について

福島第一原発事故を受けて改正された設置許可基準規則42条は、シビアアクシデントに対処するために、①原子炉内の圧力を遠隔操作できる「減圧操作設備」、②原子炉容器及び原子炉格納容器への「注水設備」、③原子炉格納容器の破損を防止する「原子炉格納容器過圧破損防止設備(フィルタ付ベント)」、④上記①ないし③の設備を制御するための「緊急時制御室」、⑤原子炉格納容器の破損を防止するために必要な設備に電源を供給するための「電源設備(発電機)」等の特定重大事故等対処施設の設置を求めているが、本件原子炉においては、平成31年度に完成予定であるとされているだけであって、現時点では設置されていない。

フィルタ付ベント設備は、福島第一原発事故において圧力上昇により格納容器が破壊される危険性があったことを踏まえ、設置が求められるようになった設備であるが、本件原子炉を含む加圧水型原子炉では、沸騰水型原子炉に比して格納容器の容量が大きいことから設置期間が猶予されている。しかし、圧力上昇により格納容器が破壊されるという事態は、福島第一原発事故の何倍もの被害をもたらす破滅的な事態であり、深刻な災害が万が一にも起こらないようにするという立場に立つのであれば、フィルタ付ベント設備を設置しないまま運転することは許されない。また、このことは、他の特定重大事故等対処施設についても同様である。したがって、特定重大事故等対処施設を設置しないまま本件原子炉を運転することは、「災害の防止上支障がない」とはいえず、具体的危険性が認められる。

(6) 航空機墜落について

平成14年7月22日に作成された基準「実用発電用原子炉施設への航空

機落下確率に対する評価基準について」は、この基準が示す標準的な評価方法に基づき、原子炉施設に航空機が落下する確率を評価し、それら評価結果の総和が10⁻⁷(回/炉・年)を超えない場合には原子炉施設への航空機落下を「想定される外部人為事象」として設計上考慮する必要はないとしている。しかし、上記基準は、①自衛隊機又は米軍機の基地内での事故は対象外とすること、②有視界飛行方式民間航空機の落下事故は全国平均値を用いること、③訓練空域内で訓練中及び訓練空域外を飛行中の自衛隊機又は米軍機の落下事故は全国平均値を用いること、④小型固定翼機及び回転翼機の定期便は評価対象外とすること、⑤計器飛行方式で飛行する大型固定翼機の不定期便は評価対象外とすること、⑥最大離陸重量が5700kg以下の「小型機」は対象外とすること、⑥最大離陸重量が5700kg以下の「小型機」は対象外とすること、⑦事故後20年以上経過した事故は考慮されないことなど、航空機落下確率をひたすら下げる仕組みとなっており不合理である。しかも、この基準は、福島第一原発事故後も、何ら変更されることなく新規制基準の内容となっているのであり、その違法性は明らかである。

(債務者の主張)

(1) 可搬式設備での対応等について

新規制基準において可搬式設備での対応が基本とされているのは、接続作業等の人的対応が必要となるデメリットはあるとしても、対応の柔軟性や耐震性の面におけるメリットの方が大きいと考えられたためである。また、新規制基準は、新規制基準検討チーム等において、国会、政府、民間、東京電力の4つの事故調査委員会がそれぞれの立場で福島第一原発事故の原因について取りまとめた事故調査報告書を踏まえた検討を遂げて制定されたものである。したがって、新規制基準が可搬式設備での対応を基本としていることは合理的である。

そして,新規制基準では,事故発生の早い段階で必要と考えられる原子炉 冷却材低圧時の冷却対策や電源確保対策については,恒設代替設備により対 応することとされているところ,債務者は,炉心注水設備(原子炉冷却材低 圧時の冷却対策)として,充てんポンプ(自己冷却式),代替格納容器スプレイポンプ等を,電源設備として空冷式非常用発電装置等を設置するなどしている。

したがって、この点について安全性に欠けるところはない。

(2) 水素爆発対策について

債務者は、水素爆発による原子炉格納容器の破損を防止するための設備を用いた対策の有効性評価においては、原子炉格納容器内の水素発生量の算定について、原子力規制委員会の定める「実用発電用原子炉に係る炉心損傷防止対策及び格納容器破損防止対策の有効性評価に関する審査ガイド」に、

「原子炉圧力容器の下部が破損するまでに、全炉心内のジルコニウム量の75%が水と反応する」ことを想定するよう定められていることを踏まえ、解析から得られる反応割合は75%を大きく下回るもの(約30%)であったが、これを多めに補正して全炉心内のジルコニウム量の75%が水と反応することとした上で、さらに不確かさの考慮として、MCCIに伴う水素の発生も合わせて考慮した評価を行ったとしても、原子炉格納容器内の水素濃度を13%未満に抑えることが可能であり、本件原子炉において水素爆発が発生することはないことを確認している。

なお、債務者は、仮に100%のジルコニウムが水と反応することを仮定 したとしても、イグナイタの効果が見込まれることから、原子炉格納容器内 の水素濃度を13%未満に抑えることが可能であり、本件原子炉において水 素爆発が発生することはないことを確認している。

(3) 水蒸気爆発対策について

水蒸気爆発に関しては、実機において想定される溶融物(二酸化ウラン (燃料ペレット)とジルコニウム (燃料被覆管)の混合溶融物)を用いた実験として、これまでにCOTELS、FARO、KROTOSが行われてお

り、延べ30回に及ぶ溶融物の水プールへの落下実験が実施されている。こ れらの落下実験のうち、KROTOSの実験において3回水蒸気爆発が発生 した以外は水蒸気爆発は発生していない。水蒸気爆発が発生したKROTO Sの実験では、あえて水蒸気爆発が発生しやすい環境とするために溶融物が 水プールに落下中に容器の底から圧縮ガスを供給し、膜沸騰状態を強制的に 不安定化させる(外乱を与える)という,実機の原子炉下部キャビティで生 じるとは考えられない条件を付加した結果、水蒸気爆発が発生したものであ る。なお、KROTOSの実験では、外乱を与えた場合でも水蒸気爆発に至 らなかったケースが5回あり、外乱を与えたとしても常に水蒸気爆発が発生 するわけではない。以上のとおり、COTELS、FARO、KROTOS の実験結果から、膜沸騰状態を不安定化させる外乱がない場合には水蒸気爆 発が発生することはなく、外乱を与えた場合でも常に水蒸気爆発が発生する わけではないことが確認されている。そして、本件原子炉においては、溶融 炉心が原子炉下部キャビティに落下する際、実験で付加したような膜沸騰状 態を不安定化させる外乱は発生しないため、上記の実験結果から、本件原子 炉において水蒸気爆発が発生する可能性は極めて小さいと考えられる。

(4) 免震重要棟について

債権者らは、本件原子炉の緊急時対策所が免震構造となっていないことを問題視するが、緊急時対策所の基準地震動Ssに対する耐震安全性を確保するための手段としては、設置許可基準規則61条も「免震機能等により」と定めるにとどまり、免震機能を備えることまで必要とされているわけではないものと解すべきである。したがって、本件原子炉の緊急時対策所が免震構造となっていないからといって、安全性に問題はない。

(5) 特定重大事故等対処施設について

新規制基準においては、特定重大事故等対処施設とは別に、故意による大型航空機衝突等によりプラントが大規模に損壊した状況における消火活動の

実施や、炉心、原子炉格納容器の損傷を緩和するための対策等が求められており(重大事故等防止技術的能力基準2.1)、債務者はこれらの対策を既に適切に講じている。特定重大事故等対処施設は、それ以外の施設及び設備によって重大事故等対策に必要な機能を満たした上で、その安全性・信頼性をさらに向上させるためのバックアップ対策として求められているものであり、特定重大事故等対処施設がなくとも安全性が欠けることにはならない。特定重大事故等対処施設の設置について、新規制基準に適合するための本体施設等に係る工事計画認可の日から5年を経過するまでの間は適用が猶予されているのもこのような理由によるものである。

(6) 航空機墜落について

債務者は、本件原子炉における航空機落下確率を算定するにあたり、「実用発電用原子炉施設への航空機落下確率の評価基準について」(以下「航空機落下確率評価基準」という。)に基づいた評価を実施している。航空機落下確率評価基準は、航空機落下を設計上考慮する必要があるか否かを検討するにあたって航空機落下の確率を評価する手法を示したものであり、評価の結果として確率が低ければ(設計上無視できる程度であれば)航空機落下を設計上考慮する必要がないとしたものである。したがって、航空機落下事故をことさら無視してよいというための基準ではない。したがって、債権者らの主張には理由がない。

11 争点11(テロリズム対策の合理性)について

(債権者らの主張)

福島第一原発事故を受けて改正された原子炉等規制法が第1条(目的)に「テロリズムその他の犯罪行為の発生も想定した必要な規制を行う」ことを明示したこと、同じく原子力基本法が第2条(基本方針)第2項において、安全を確保するために「確立された国際的な基準を踏まえ」ることを明示したことからすれば、上記「必要な規制」とは、少なくとも「確立された国際的な基準」

を踏まえた深刻な災害が万が一にも起こらないといえる程度の規制でなければならない。このような「必要な規制」が行われていなければ、具体的危険性が認められることになるところ、次のとおり、本件原子炉につきそのような規制は行われていない。

(1) 侵入者対策について

米国では、NRC(米国原子力規制委員会)がDBT(設計脅威)を定めており、これに対応した実戦訓練がNRC立会いの下に実施されている。ここでは、仮想敵チームが重要な安全系機器を破壊するために外から侵入を試み、これを原子力発電所のチームが防衛する。防衛側のチームには、いつ頃「模擬攻撃」があるか知らされるが、シナリオは教えられていない。訓練期間中、複数のシナリオに基づいた攻撃が、数日にわたって実施される。本件原子炉を含む日本の原子力発電所における侵入者対策は、米国等における「確立した国際的な基準」から見て極めて低いレベルにあり、また、日本とは比べ物にならないくらい高いレベルにある米国等の核関連施設でさえ侵入を許している事実に鑑みれば、深刻な災害が万が一にも起こらないというために必要な対策が講じられているとは到底いえない。

(2) 内部脅威対策について

一般に、テロリズムというと外部からの攻撃を想定しがちであるが、作業員等内部情報に精通した人間による機密情報の漏洩・テロリストの侵入幇助や、自ら攻撃を加えたりする内部脅威の存在も忘れてはならない。作業員をはじめとする原子力施設従事者の信頼性確認制度は、内部脅威対策として不可欠といえる。例えば、米国においては、国家安全に係る業務に就く者又は就こうとする者に対する信頼性確認制度(セキュリティ・クリアランス制度)があり、身元の裏付け、職歴、学歴、クレジット情報、犯罪歴、軍経歴等で個人の性格や評判を確認し、これに準じて、原子力施設に立ち入る者についても同様の確認制度があり、事業者に確認義務が法定されている。上記の個

人情報に加え,心理学的評価や行動観察,アルコール・薬物依存チェックも 求められる。これに対し、日本は、主要な原子力利用国の中で唯一、原子力 施設における信頼性確認制度を導入していない状況にある。

(3) 航空機衝突対策

故意による航空機の衝突は、いわゆる「9.11テロ事件」の実例があり、 かつ、原子力施設それ自体がダーティーボムであることが明らかになった今 日においては、破壊活動の意思を持つ者にとって、最も効果的な目標である ことが周知の事実となった。新規制基準は、テロリズムが発生した場合に対 処するための基準を新設し、意図的な航空機衝突などへの可搬式設備を中心 とした対策(可搬式設備・接続口の分散配置)とバックアップ対策として常設 化(フィルタ付きベント設備等の特定重大事故等対処施設及び所内常設直流 電源設備の設置)を要求している。しかし、大型航空機が衝突し、大量の燃 料が飛散炎上している事態を想定すると、可搬型設備を作業員が迅速に必要 な箇所に搬送し、かつ、運転・稼働させることが常に成功するとは考えられ ない。人間の判断能力及び運動能力には限界があり、福島第一原発事故にお いて事態把握だけでも長時間を要してメルトダウンや水素爆発を許したこと を事実として受け入れなければ、絵に描いた餅になることは明らかである。 また、特定重大事故等対処施設等の設置期限は、新規制基準施行後5年以内 と猶予されていたが、さらに、この猶予期間すらも間に合わないことから 「工事計画認可」から5年以内とさらなる猶予期間を設けるために規則改正 が行われた。しかし、深刻な災害を万が一にも起こしてはならないという立 場に立つのであれば,特定重大事故等対処施設等を設置しないままに再稼働 を行うことは許されない。

(4) ミサイル対策について

本件原子炉がミサイルにより攻撃された場合に大量の放射性物質が放出される事態が発生する可能性を否定することはおよそ不可能である。特にミサ

イル攻撃に弱いと考えられるのが使用済燃料プールであり、福島第一原発事故において4号機建屋が爆発して使用済燃料が非常に危険な状態に陥ったことから、使用済燃料プールの脆弱性が明らかになり、テロリズムの具体的な標的になったと考えるべきであるが、使用済燃料プールは、原子炉格納容器のように堅固な施設に守られていないため、ミサイル攻撃を受けた場合に大量の放射性物質が放出される事態を防ぐことはおよそ期待できない。

(5) いわゆるサイバーテロ対策について

原子力発電所の制御系システムに侵入し、燃料操作によって炉心に影響を与える、電源系統の遠隔操作によって冷却機能を麻痺させる等、原子力発電所へのサイバーテロが発生すれば、最悪の場合、放射能漏れの危険性もある。この対策としては、インターネットなどのオープンネットワークに接続しないということが考えられるが、作業員などがUSBメモリを持ち込むことで、容易にシステムをウイルスに感染させることができる。この点に関し、本件発電所を含む日本の原子力発電所においては作業員等の信頼性確認制度が整備されていないことは、上記のとおりである。本件原子炉のサイバーテロ対策については、深刻な災害が万が一にも起こらないというために必要な対策が講じられているとは到底いえない。

(債務者の主張)

(1) 侵入者対策について

原子力基本法2条2項の規定は、必ずしも米国等のテロリズム対策と同様の対策を講じることを要求するものではなく、確立された国際的な基準を踏まえつつ、我が国の法制度やテロリズムをめぐる状況を勘案した上で、我が国において最も適切なテロリズム対策を講じ、原子力発電所の安全性を確保することを求めているものと解される。そうであるところ、債務者は、安全上重要な設備を含む区域を設定し、その区域を人の容易な侵入を防止するための柵、鉄筋コンクリート造の壁等の障壁によって防護した上で、巡視、監

視等を行うことにより、接近管理及び出入管理を適切に行うとともに、探知施設を設け、警報、映像等を集中監視している。さらに、防護された区域の内部においても、施錠管理により、原子炉施設等の防護のために必要な設備又は装置の操作に係る情報システムへの不法な接近を防止している。また、本件発電所に不正に爆発性又は易燃性を有する物件その他人に危害を与え、又は他の物件を損傷する恐れがある物件を持ち込むこと(郵便物等による発電所外からの爆破物及び有害物質の持ち込みを含む。)を防止するため、持込み点検を実施するなどしており、その対応に不合理な点はない。

(2) 内部脅威対策について

債務者は、安全確保のために枢要な設備を含む区域では、二人以上の者が同時に作業又は巡視を行うこと(ツーマンルール)としており(実用発電用原子炉の設置、運転等に関する規則91条2項15号、同16号等参照)、内部者の不審行為に対する対策も適切に講じている。債務者は、現時点で信頼性確認制度を導入していないものの、作業員等の内部者によるテロリズム行為を防止する観点から、作業員の出入管理、持込み点検等を適切に行うことはもとより、安全確保のために枢要な設備を含む区域では、二人以上の者が同時に作業又は巡視を行う「ツーマンルール」の遵守を徹底することで、本件発電所の安全確保に努めている。原子力発電所の作業員等の信頼性確認制度の導入にあたっては、プライバシーの保護等にかかわる問題があり、慎重な制度設計が必要となることから、現在、原子力規制委員会の下に設けられた「個人の信頼性確認制度に関するワーキンググループ」において、同制度の導入に向けた議論が慎重に進められているところであるが、制度が導入されるまでの間は、債務者が講じているような対策により安全を確保していくことが前提とされている。

したがって、債務者が信頼性確認制度を導入していないことをもって本件 発電所のテロリズム対策が不十分であるということにはならない。

(3) 航空機衝突対策について

債務者は、地震、津波その他の自然現象又は故意による大型航空機の衝突その他のテロリズムによる影響を考慮し、屋内の可搬型重大事故等対処設備について、可能な限り常設重大事故防止設備と位置的分散を図り複数箇所に分散して保管している。さらに、屋外に保管する可搬型重大事故等対処設備のうち水又は電力を供給するための注水設備及び電源設備は必要となる容量等を賄うことができる設備の2セットについて、また、それ以外のものは必要となる容量等を賄うことができる設備の1セットについて、それぞれ原子炉建屋及び原子炉補助建屋から100mの離隔距離を確保するとともに、当該可搬型重大事故等対処設備がその機能を代替する屋外の設計基準事故対処設備等から100mの離隔距離を確保した上で、複数箇所に分散して保管している。加えて、当該可搬型重大事故等対処設備がその機能を代替する屋外の常設重大事故等対処設備からも、少なくとも1セットは100mの離隔距離を確保して保管している。

債権者らは、特定重大事故等対処施設が設置されていなければ、故意による大型航空機衝突により火災が発生する状況等に対処できないかのように主張するが、債務者は、故意による大型航空機衝突等によりプラントが大規模に損壊した状況における消火活動の実施や、炉心、原子炉格納容器の損傷を緩和するための対策を適切に講じており、特定重大事故等対処施設は、これらの対策の安全性・信頼性をさらに向上させるためのバックアップ施設と位置付けられるものである。

(4) ミサイル対策について

ミサイル攻撃等の大規模なテロ攻撃に対しては、武力攻撃事態等における 国民の保護のための措置に関する法律等に基づき、緊急対処事態として国が 対策本部を設置し、原子力災害への対処、放射性物質による汚染への対処等 にあたり、債務者を含む原子力事業者は、国と連携してこれに対処すること としている。債権者らの主張は、「確立された国際的な基準」により要求されるものではないばかりか、事実上、絶対的安全性を求めるものに外ならず、 失当である。

(5) サイバーテロ対策について

サイバーテロを含む不正アクセス行為を防止するため、原子炉施設等の防護のために必要な設備又は装置の操作に係る情報システムが、電気通信回線を通じた不正アクセス行為を受けることがないよう、当該情報システムに対する外部からのアクセスを遮断している。なお、債務者は、USBを介したウイルス感染の防止対策として、事前に承認され、かつ、ウイルスチェックを受けたUSBでなければ使用できないよう厳格な管理体制を構築している。

12 争点 12 (保全の必要性) について

(債権者らの主張)

本件原子炉施設において過酷事故が起こった場合、大気中に放出された大量の放射性物質は風向き次第で債権者らの現住所地(広島市、松山市)を汚染することとなり、瀬戸内海に放出された放射性物質は閉鎖性海域の特性により拡散することなく滞留することになるという事態に至るおそれがある。そのような事態が生ずると、債権者らは、放射線被曝による健康被害のおそれやそれへの不安にさいなまれ続け、現住所地からの避難を強いられることによる肉体的、精神的負担を余儀なくされるとともに、それまで築いてきた地域コミュニティを丸ごと失うことになる。このように、ひとたび原子力発電所事故が発生すれば、債権者らの生命、身体、精神及び生活の平穏に重大かつ深刻な被害が発生し、その人格権が侵害されること、さらに、そのような人格権の侵害が不可逆的かつ長期間継続することは、福島第一原発事故やチェルノブイリ原発事故による被害の実態に照らして明らかである。したがって、本件における保全の必要性は高いというべきである。

(債務者の主張)

争う。債権者らは、いずれも本件発電所から少なくとも約60km以上離れた場所に居住しているのであるから、仮に放射性物質が環境へ放出される事態が生じても、直ちにその人格権が侵害されることになるとは考え難い。そもそも、この点に関する債権者らの主張は、債権者ら各人に個別に生ずるおそれのある人格権侵害の具体的な内容には触れないまま、過酷事故が生じた場合に想定される一般的な被害を指摘する内容に終始しており、当を得ない。

13 争点 13 (担保金の額) について

(債権者らの主張)

被保全権利や保全の必要性の疎明の程度、予想される債務者の被害、正義・公平の観点からすれば、債権者らに担保を供させる必要はない。

(債務者の主張)

争う。

第4 当裁判所の判断

- 1 司法審査の在り方(争点1)について
 - (1) 人格権に基づく妨害予防請求として発電用原子炉の運転等の差止めを求める訴訟においては、原告が、当該発電用原子炉施設が客観的にみて安全性に欠けるところがあり、その運転等によって放射性物質が周辺環境に放出され、その放射線被曝によりその生命、身体に直接的かつ重大な被害を受ける具体的危険が存在することについての主張、立証責任を負うべきであり、その保全処分としての発電用原子炉の運転等の差止めを求める仮処分においては、債権者が、被保全権利としての上記の具体的危険の存在についての主張、疎明責任を負うべきものと解される。

もっとも、当該訴訟の原告が当該発電用原子炉施設の安全性の欠如に起因 して生じる放射性物質が周辺の環境に放出されるような事故によってその生 命、身体に直接的かつ重大な被害を受けるものと想定される地域に居住等す る者である場合には、当該発電用原子炉施設の設置、運転等の主体である被 告事業者の側において,まず,当該発電用原子炉施設の運転等によって放射性物質が周辺環境に放出され,その放射線被曝により原告ら当該施設の周辺に居住等する者がその生命,身体に直接的かつ重大な被害を受ける具体的危険が存在しないことについて,相当の根拠,資料に基づき,主張,立証する必要があり,被告事業者がこの主張,立証を尽くさない場合には,上記の具体的危険が存在することが事実上推定されるものというべきである。そして,そのことは,保全処分の申立てにあっては,債務者事業者において上記の主張,疎明をする必要があり,債務者事業者がこの主張,疎明を尽くさない場合には,上記の具体的危険が存在することが事実上推定されるということになる。

ところで、上記訴訟における被告事業者は、上記の具体的危険が存在しないことについての主張、立証において、その設置、運転等する発電用原子炉施設が原子力規制委員会において用いられている具体的な審査基準に適合するものであることを主張、立証の対象とすることができるというべきである。そして、被告事業者の設置、運転等する発電用原子炉施設が原子炉等規制法に基づく設置の変更の許可や工事の計画の認可等を通じて原子力規制委員会において用いられている具体的な審査基準に適合する旨の判断が原子力規制委員会において用いられている場合には、被告事業者は、当該具体的審査基準に不合理な点のないこと及び当該発電用原子炉施設が当該具体的審査基準に不合理な点のないこと及び当該発電用原子炉施設が当該具体的審査基準に適合するとした原子力規制委員会の判断に不合理な点がないことないしその調査審議及び判断の過程に看過し難い過誤、欠落がないことを相当の根拠、資料に基づき主張、立証(保全処分の申立てにあっては債務者事業者において主張、疎明)すれば足りるというべきである。(以上につき、福岡高等裁判所宮崎支部平成28年4月6日決定・判時2290号90頁)

ところで、本件を含め、人格権に基づく妨害予防請求として原子力規制委員会によって新規制基準に適合する旨判断された発電用原子炉施設の運転等

の差止めを求める仮処分申立てという限度で事案を共通にする事件が同時期 に複数申し立てられており、中には、ある特定の発電用原子炉施設の運転差 止仮処分を求める複数の申立てが別々の裁判所で審理されている状況も見ら れる(公知の事実)。これらの事件における司法審査の在り方が、審理の対 象となる発電用原子炉施設によって、又は、同一の発電用原子炉施設につき 運転差止仮処分を審理する裁判所によって区々になることは、当事者双方を して互いに尽くすべき主張、疎明の程度をめぐる予測可能性を損なわせる事 態を招きかねない。しかし、そのような事態は、上記のような類型の仮処分 申立事案が迅速な審理を求められており(民事保全法3条、13条2項等参 照),かつ、いわゆる満足的仮処分をもたらすべき事案であることにも鑑み ると、望ましいものとはいえない。さればといって、新規制基準に適合する 旨判断された発電用原子炉施設を対象とする上記のような類型の仮処分申立 事案における司法審査の在り方について直接言及した判例は見当たらない。 福岡高等裁判所宮崎支部の上記決定は、そのような状況の下で、新規制基準 に適合する旨判断された発電用原子炉施設を対象とする上記のような類型の 仮処分申立事案における司法審査の在り方について一定の判断を示した、確 定した抗告審決定であって、一件記録を精査しても、本件決定の時点で、ほ かに同種の事案に係る別の裁判所による確定した抗告審決定は見当たらない。 そうであれば、本件における司法審査の在り方については、福岡高等裁判所 宮崎支部の上記決定を参照することとするのが相当である。

(2)ア 債権者らは、上記第3の1債権者らの主張欄のとおり主張する。

人格権に基づく妨害予防請求としての発電用原子炉施設の運転等の差止 請求において当該発電用原子炉施設が確保すべき安全性は、結局のところ、 我が国の社会がどの程度の水準のものであれば容認するかという観点から 判断すべきであるものと解される。そして、我が国の社会が容認する当該 発電用原子炉施設が確保すべき安全性の水準が不易なものではなく、新た な科学的技術的知見の獲得や発電用原子炉施設を取り巻く社会の意識の変化に応じ、時代とともに変化する性質のものであることは承認しなければならない。

そして、我が国の発電用原子炉施設の設置、運転等は、原子炉等規制法 による安全規制に服することによって初めて可能であるところ、本件改正 後の原子炉等規制法は,福島第一原発事故の教訓等に鑑み,発電用原子炉 施設の安全規制に最新の科学的技術的知見を反映させ、発電用原子炉施設 を常に最新の科学的技術的知見を踏まえた基準に適合することを求めると ともに、科学的、技術的手法の限界を踏まえて、想定外の事象が発生して 発電用原子炉施設の健全性が損なわれる事態が生じたとしても、放射性物 質が周辺環境に放出されるような重大事故が生じないよう、重大事故対策 の強化を求めるものであると解される。そして、このような本件改正後の 原子炉等規制法における規制の目的及び趣旨からすれば、原子炉等規制法 は、最新の科学的技術的知見を踏まえて合理的に予測される規模の自然災 害を想定した発電用原子炉施設の安全性の確保を求めるものと解される。 このような、本件改正後の原子炉等規制法に基づく安全規制のありようは、 現時点における我が国の社会が容認する当該発電用原子炉施設が確保すべ き安全性の水準であるというべきであって、そこに、債権者らが主張する ような「極めて高度な安全性」を発電用原子炉施設に求める趣旨のもので あると解する根拠は見いだせない。債権者らの主張は、採用することがで きない。

- イ 他方,債務者は,上記第3の1債務者の主張欄のとおり主張するけれど も,上記(1)の説示に反する限りにおいて,採用することができない。
- (3) 上記(1)で説示したところに従って本件についてみるに、債権者らの各肩書住所地と本件原子炉施設との距離は前提事実(1)アのとおりであり、少なくとも債権者らの一部に本件原子炉施設の安全性の欠如に起因して生じる放射性

物質が周辺の環境に放出されるような事故によってその生命、身体に直接的かつ重大な被害を受けるものと想定される地域に居住等する者が含まれているものといってよいから、債務者において、本件原子炉施設の運転等によって放射性物質が周辺環境に放出され、その放射線被曝により債権者ら(のうち本件原子炉施設の安全性の欠如に起因して生じる放射性物質が周辺の環境に放出されるような事故によってその生命、身体に直接的かつ重大な被害を受けるものと想定される地域に居住等する者)がその生命、身体に直接的かつ重大な被害を受ける具体的危険が存在しないことについて、相当の根拠、資料に基づき、主張、疎明する必要があり、債務者がこの主張、疎明を尽くさない場合には、上記の具体的危険が存在することが事実上推定されるものというべきである。

ところで、債務者は、新規制基準の下において、原子力規制委員会から、本件原子炉施設につき、平成27年7月15日に発電用原子炉設置変更許可、平成28年3月23日に工事計画認可、同年4月19日に保安規定変更認可の各処分を受けており、原子力規制委員会において用いられている具体的な審査基準に適合する旨の判断が原子力規制委員会により示されているものといえるから、債務者は、本件原子炉施設が原子力規制委員会において用いられている具体的な審査基準に適合するものであることを主張、疎明の対象とすることができるところ、その主張、疎明を行っていることになる。

したがって、本件においては、債権者らの主張に即して、原子力規制委員会において用いられている具体的審査基準に不合理な点がないか否か、及び本件原子炉施設が当該具体的審査基準に適合するとした原子力規制委員会の判断に不合理な点がないか否かないしその調査審議及び判断の過程に看過し難い過誤、欠落がないか否かという観点から、債務者が上記の主張、疎明を尽くしているか否かについて判断することとする。

2 新規制基準の合理性(争点2)について

(1) 新規制基準の手続的問題点について

ア 原子力規制委員会の専門性、独立性の欠如等の主張について

債権者らは、上記第3の2債権者らの主張欄(1)ア、イのとおり主張する。 しかし、設置法7条7項3号、4号の各欠格事由は、現に原子力事業者 の役員や従業者にあることを指し、過去にそのような立場にあったことを 指すものではないことは該当法条の文言上明白である。この点に関する債 権者らの主張は、上記欠格事由をめぐる誤った解釈を前提とするものであ って、いずれも失当である。

なお、債権者らの上記主張は、かつて原子力事業者の役員や従業者であった者が原子力規制委員会を構成したのでは同委員会の独立性が確保されない旨をいうものと善解する余地がある。しかし、原子力規制委員会の委員長又は委員において、上記のような経歴を有するからといって、直ちに中立公正な立場で独立して職権を行使することが類型的に期待できないとは限らないから、上記主張は採用することができない。

また、債権者らは、原子力規制委員会を構成する委員の人数が少なすぎるとか、原子力規制庁の職員はかつて原子力推進に係る官庁出身の職員であるとの事実を指摘して、原子力規制委員会の専門性、独立性が欠けている旨も主張する。

しかし、原子力規制委員会における委員長及び委員の数は法定されているし(設置法6条1項)、原子力規制委員会の委員が備えるべき資質は前提事実(8)イ(イ)のとおりであるから、委員の多寡が原子力規制委員会としての事務処理能力を左右するものとは考え難い。また、原子力規制庁は、原子力規制委員会の事務局として庁務を担う立場に過ぎないし、同庁の職員には、幹部職員に至るまで、いわゆる「ノーリターンルール」が適用されるというのであって(前提事実(8)イ(イ))、同庁における職員の出身官庁の如何によって原子力規制委員会の専門性、独立性が直ちに欠けることにな

るわけでもない。この点に関する債権者らの主張は、採用することができない。

イ 福島第一原発事故の原因究明が途上である等の主張について

債権者らは、上記第3の2債権者らの主張欄(1)ウないしオのとおり主張する。

しかし、福島第一原発事故後、平成24年6月27日法律第47号によ り改正された原子炉等規制法によれば、発電用原子炉を設置しようとする 者又は既に原子炉設置許可を受けたが一定の事項を変更しようとする者は, 原子力規制委員会の原子炉設置許可又は設置変更許可を受けなければなら ず、原子力規制委員会は、上記各申請が「発電用原子炉施設の位置、構造 及び設備が核燃料物質若しくは核燃料物質によって汚染された物又は発電 用原子炉による災害の防止上支障がないものとして原子力規制委員会規則 で定める基準に適合するものであること」等と認めるときでなければ,上 記各許可処分をすることができないと規定されているところ(同法43条 の3の5第1項,43条の3の6第1項4号,43条の3の8第2項), 平成24年6月27日法律第47号は、原則として、公布日から起算して 3月を超えない範囲内において政令で定める日から施行されることとされ る一方(同法附則1条本文),上記各規定については、例外的に、施行日 から起算して10月を超えない範囲内において政令で定める日に施行され ることとされ(同条ただし書)、結果的に、上記各規定は平成25年7月 8日に施行されるに至ったものである。そうすると、同法は、原子力規制 委員会に対して、遅くとも同日までには新規制基準を策定し施行すること を求めていたと解するべきであるから、債権者らが検討期間が短いなどと 問題視する点は立法論にすぎず、新規制基準の策定手続に瑕疵があること を基礎付ける事情とはいえない。

また、新規制基準は、原子力規制委員会の下に置かれた新規制基準検討

チーム、地震津波基準検討チーム等において、国会、政府、民間、東京電力の4つの事故調査委員会がそれぞれ原因究明等を行って取りまとめた事故調査報告書を踏まえた検討がなされた上で制定されたものであり、原子力規制委員会は、本件原子炉の審査書案に対する科学的・技術的意見の公募手続で寄せられた「福島原発事故の検証が不十分。原因の究明を先に行うべき」との意見に対して、「東京電力福島第一原子力発電所事故については、基本的な事象進展等について整理されています。これを踏まえ、新規制基準を制定しました」と回答している(乙72、73、84、130)。そして、原子炉等規制法の上記各規定が平成25年7月8日に施行されることになっていたことも踏まえると、債権者らが主張するような意味での徹底した福島第一原発事故の分析が望ましいにしても、そのような分析を経なければ原子力発電所の再稼働ができないとするのが原子炉等規制法の趣旨であるとは考え難く、この点でも新規制基準の策定手続に瑕疵があるということもできない。この点に関する債権者らの主張は、採用することができない。

ウ 新規制基準が欧米先進各国の基準と比べて緩やかである等の主張につい て

債権者らは、上記第3の2債権者らの主張欄(1)カのとおり主張する。

新規制基準が、あらゆる面において、IAEA等の国際機関の定める安全基準を含む欧米先進各国の安全基準と同等又はそれ以上に厳格であると言い切れるかどうかについてはしばらく措くとしても、原子力発電所が立地する地域の自然条件、当該自然条件の解析を含む最新の科学的技術的知見及びどの程度の安全性が確保されれば容認するかという社会通念等は国によって様々であるから、IAEA等の国際機関の定める安全基準を含む欧米先進各国の安全基準が常に絶対の安全基準として採用されなければならないわけではない。原子力基本法2条2項が、安全の確保につき「確立

された国際的な基準を踏まえ」ることを求めるにとどまるのも、我が国の実情に応じた規制を許容する趣旨であると解するのが相当である。そうであれば、新規制基準が、あらゆる面において、IAEA等の国際機関の定める安全基準を含む欧米先進各国の安全基準と同等又はそれ以上に厳格な内容でない限り原子炉等規制法に反するとか、社会通念上許容されないということはできない。この点に関する債権者らの主張は、採用することができない。

(2) 新規制基準の実体的問題点について

ア 「基準の不明確性」に関する主張について

債権者らは、上記第3の2債権者らの主張欄(2)アのとおり主張する。

しかし、現在の科学技術的水準からすれば、基準地震動策定や基準津波 策定等を含む新規制基準のあらゆる面において、一義的に客観的な基準を 設けることは不可能であるといわざるを得ない。また、原子炉等規制法4 3条の3の6第1項4号が、発電用原子炉施設の位置、構造及び設備が災 害の防止上支障がないものであることを審査するための基準を原子力規制 委員会規則で定めることとしているのは、審査の基礎となる基準の策定及 びその適合性審査において、多方面にわたる極めて高度な最新の科学的、 専門技術的知見に基づく判断が必要とされることに鑑み、原子力利用にお ける安全の確保に関する各専門分野の学識経験者等を擁する原子力規制委 員会に、科学的、専門技術的知見に基づく合理的な判断に委ね、科学技術 的な事項について一定の裁量を認めたものと解される。そうであれば、新 規制基準が、その内容に債権者が指摘するような文言を含んでいるからと いって、基準として不明確であって、原子炉等規制法に反するとか、社会 通念上許容できないなどということはできない。この点に関する債権者ら の主張は、採用することができない。

イ 「立地審査指針違反」に関する主張について

債権者らは、上記第3の2債権者らの主張欄(2)イのとおり主張する。

しかし、設置許可基準規則及び同解釈中には「原子炉立地審査指針及び その適用に関する判断のめやすについて」(いわゆる立地審査指針)を用 いて審査することを求める旨の定めは見当たらず、逆に、重大事故が発生 した場合において原子炉格納容器の破損及び外部への放射性物質の異常な 水準の放出を防止するための必要な措置等を求める定め(設置許可基準規 則37条)があること(乙68),原子力規制委員会は、本件原子炉施設 の審査書案について行われたパブリックコメントにおいて立地審査指針の 廃止を問題視する旨の意見に対し, 「東京電力福島第一原子力発電所事故 において、従来の立地審査指針で想定していた事故の規模を上回る事故が 発生したことを踏まえ、放射性物質の異常な水準の放出を防止するという 観点から,重大事故等対策の有効性を確認することとしています。」と回 答していること(乙136),田中委員長が,平成25年4月23日の参 議院予算委員会において、本件改正後の当該発電用原子炉施設の安全性の 判断は、立地審査指針が求めていたような公衆と施設との離隔距離が確保 されているかどうかではなく、重大事故等が生じた場合の対策が施されて いるかどうかによる旨答弁していること(乙137),以上の事実が認め られ、それらによれば、新規制基準は、立地審査指針による審査に代えて、 重大事故等の拡大の防止等の措置が取られているかどうかを審査の対象と する方針に改めたものと解するのが相当である。そして、そのような審査 の方針の変更は、福島第一原発事故における放射性物質の拡散による被害 が立地審査指針の想定よりも遙かに広範囲に及んでしまった事実(前提事 実(6)) を踏まえると、一応合理的であると認められる。債権者らの主張は、 上記の経緯にかかわらず、立地審査指針が今なお具体的審査基準として有 効であることを前提とするものであって、採用することができない。

また、債権者らは、立地審査を経ていない現状は、国際的な基準、ひい

ては国際的な基準を踏まえて安全確保を図るべきことを規定した原子力基本法2条2項にも反する旨も主張するけれども、IAEAの安全基準等から、重大事故等対処施設を備えるのみならず、立地審査も行うことが、国際的な基準として確立されているとまではいえない。この点に関する債権者らの主張も、採用の限りでない。

ウ 「防災審査の不存在」に関する主張について

債権者らは、上記第3の2債権者らの主張欄(2)ウのとおり主張する。

しかし,原子力災害に関する事項は,原子力災害対策特別措置法,原子 炉等規制法、災害対策基本法その他原子力災害の防止に関する法律の相互 の連関において定められるべきものと解されるところ(原子力災害対策特 別措置法1条参照), 国は、原子力災害対策特別措置法又は関係法律の規 定に基づき、原子力災害対策本部の設置、地方公共団体への必要な指示そ の他緊急事態応急対策の実施のために必要な措置並びに原子力災害予防対 策及び原子力災害事後対策の実施のために必要な措置を講ずること等によ り、原子力災害についての災害対策基本法3条1項の責務を遂行し(原子 力災害対策特別措置法4条1項),地方公共団体は,原子力災害対策特別 措置法又は関係法律の規定に基づき、緊急事態応急対策などの実施のため に必要な措置を講ずること等により、原子力災害についての災害対策基本 法4条1項及び5条1項の責務を遂行し(原子力災害対策特別措置法5 条)、原子力規制委員会は、原子力事業者、国の各機関、地方公共団体等 による原子力災害対策の円滑な実施を確保するため原子力災害対策指針を 定める(原子力災害対策特別措置法6条の2)などとされている。してみ ると,原子力災害への対策は,原子炉等規制法のみならず,他の法律との 連関があって初めて成り立つものであるというべきであるから、原子炉等 規制法に基づく審査の基準である新規制基準に原子力災害への対策まで盛 り込むことが予定されているとは解されない。この点に関する債権者らの

主張は、採用することができない。

エ 「放射性廃棄物処理方法審査の不存在」に関する主張について 債権者らは、上記第3の2債権者らの主張欄(2)エのとおり主張する。

しかし、原子炉等規制法43条の3の6第1項は、①発電用原子炉が平和の目的以外に利用されるおそれがないこと、②申請者に発電用原子炉を設置するために必要な技術的能力及び経理的基礎があること、③申請者に重大事故の発生及び拡大の防止に必要な措置を実施するために必要な技術的能力その他の発電用原子炉の運転を適確に遂行するに足りる技術的能力があること、④発電用原子炉施設の位置、構造及び設備が核燃料物質若しくは核燃料物質によって汚染された物又は発電用原子炉による災害の防止上支障がないものとして原子力規制委員会規則で定める基準に適合するものであることを、設置許可又は設置変更許可処分の要件とするところ、同規定に照らせば、使用済燃料の処理については、同項1号の「平和の目的以外に利用されるおそれがないこと」という要件の適合性判断に必要な範囲において審査されることが予定されている(乙138)というべきである。そうであれば、債権者らが主張するような、使用済燃料の再処理方法等の政策的問題は、原子炉等規制法等による規制の埒外であるといわざるを得ない。

なお、債権者らは、使用済燃料の問題を将来世代に押し付けることは憲法13条及び25条に反する旨も主張するけれども、具体的に、新規制基準が、誰の、どのような内容の憲法上の権利を侵害することになるのか、その主張内容から何ら明らかにならない。

この点に関する債権者らの主張は、いずれも採用することができない。

オ 「環境基準等の設定欠如」に関する主張について

債権者らは、上記第3の2債権者らの主張欄(2)オのとおり主張する。

しかし、原子炉等規制法43条の3の6第1項の規定からすれば、債権

者らが指摘する原子力発電所の平常運転に伴って周辺の一般公衆が受ける 放射線量に関する規制が存在せず自主的対応に任されていることをもって、 新規制基準が原子炉等規制法に反するということはできない。この点に関 する債権者らの主張は、採用することができない。

(3) まとめ

以上によれば、新規制基準には、手続上も実体上も、その合理性を失わせる瑕疵は見当たらない。

- 3 基準地震動策定の合理性(争点3)について
 - (1) 新規制基準の合理性について

新規制基準について、その策定に至る手続や実体において合理性を失わせるほどの瑕疵があるとまでいえないことは上記2で検討したとおりである。

そして、前提事実で見た新規制基準へ至る耐震のための基準策定の経緯及び新規制基準を前提とした審査に用いるべき地震ガイドの各内容によれば、新規制基準における基準地震動の考え方は、新規制基準の策定前から発電用原子炉施設の安全審査に用いられてきたものに、東北地方太平洋沖地震及び福島第一原発事故の教訓等を踏まえ、これらの原因を分析するなどして、その成果を取り込んだ成果というべきものであって、発電用原子炉施設の敷地及び敷地周辺の調査を徹底的に行い、最新の科学的技術的知見を踏まえ、各種不確実さも考慮した上で、複数の手法を用いて評価した地震動を多角的に検討し、これを基に、当該発電用原子炉施設の敷地において発生することが合理的に予測される最大の地震動を策定し、その地震動に耐え得る設計を要求することによって、当該発電用原子炉施設にその地震動への耐震性を持たせ、なおかつ、その地震動の予測の限界を率直に認め、基準地震動を超過する地震など想定外の事象が発生し、発電用原子炉施設の健全性が損なわれる事態が生じたとしても、その事態を放射性物質が大量に環境に放出される前に収束させるだけの備えを当該発電用原子炉施設に持たせようという認識に

基づくものであることが認められ、このような考え方それ自体は、最新の科学的技術的知見を踏まえて合理的に予測される規模の自然災害を想定した発電用原子炉施設の安全性の確保を求める原子炉等規制法の趣旨に沿うものであって、何ら不合理な点はない。

また、基準地震動の策定方針について検討するに、上記のとおり敷地及び 敷地周辺について最新の科学的、技術的知見を踏まえた調査を徹底して行う ことを前提に、「敷地ごとに震源を特定して策定する地震動」と「震源を特 定せず策定する地震動」の2つの側面から基準地震動を策定することとして いるが、前者については、地震学及び地震工学の著しい進歩を踏まえた地震 動評価手法である断層モデルを用いた手法のみならず、それと異なる手法で ある応答スペクトルに基づく地震動評価をも行った上で設定することとし、 これを基本としつつも、なお敷地近傍において発生する可能性のある内陸地 殻内の地震の全てを事前に評価し得るとは言い切れないことから、これを補 完するものとして、観測記録を基に各種の不確かさを考慮して、「震源を特 定せず策定する地震動」を適切に策定することにより、発電用原子炉施設の 耐震設計の基準とすべき基準地震動の策定に万全を期することとしたもので あるということができる。このような新規制基準における基準地震動の策定 方針それ自体に、何ら不合理な点はないというべきである。

(2) 敷地ごとに震源を特定して策定する地震動(内陸地殻内地震)の想定の相当性について

ア 応答スペクトルに基づく地震動評価について

- (ア) 松田式の適用方法について
 - a 債権者らは、上記第3の3(1)債権者らの主張欄ア(ア) a のとおり主張する。そして、一件記録によれば、(a)松田式は、①地震は地殻に蓄えられた歪みエネルギーの急激な解放である、②その歪みエネルギーの大小は歪み領域の大小による、③歪み領域の大小は断層のディメンジ

ョン (大きさ)の大小に反映している,という考え方に基づき,日本の内陸部で発生した14の地震のデータから得られた,断層長さと地震のマグニチュードとの関係を表す経験式であって,今も広く実務に用いられていること (乙175,審尋の全趣旨),(b)債務者は,松田式の適用範囲が断層長さ80km以下のものに限られるとの見解を前提に,130km,480kmの各ケースについては断層長さが約80km以下になるように断層を区分し,区分した断層長さごとに算出した地震規模を合計することにより,当該断層全体の地震規模を求めたこと(審尋の全趣旨),以上の事実が一応認められる。

当事者双方の主張を前提にする限り、松田式を断層長さ80㎞超の断層にも直接適用できるか否かは、断層長さが長くなればすべり量が飽和するといえるかどうかにかかっているものといってよい。そして、すべり量の飽和に伴いスケーリング関係が変化するとの知見を採用することがあながち不合理とはいえないとなれば、債務者が採用した松田式の適用の手法は一応の合理性が認められるものというべく、ここでは主としてすべり量が飽和するとの知見を採用することの相当性という観点から、債務者の評価の合理性を検討することとする。

b 地震本部の提言等

地震本部は、平成7年1月17日に発生した阪神・淡路大震災を受け、地震に関する調査研究の成果が国民や防災を担当する機関に十分に伝達され活用される体制になっていなかったという課題意識の下、行政施策に直結すべき地震に関する調査研究の責任体制を明らかにし、これを政府として一元的に推進するため、地震防災対策特別措置法に基づき文部科学省に設置された政府の特別の機関であって、文部科学大臣を本部長として、政策委員会と地震調査委員会とで構成されている(地震防災対策特別措置法7条、8条1項、9条1項、10条1

項)。このうち、地震調査委員会は、「地震に関する観測、測量、調査又は研究を行う関係行政機関、大学等の調査結果等を収集し、整理し、及び分析し、並びにこれに基づき総合的な評価を行」うことを目的としており(同法10条1項、7条2項4号)、複数の大学教授などの地震学者が地震調査委員会委員に任命されている(同法10条3項参照)。(以上につき、甲D296~298、乙251)

そして,一件記録によれば,地震本部が作成した以下の文献には, 次のような指摘があることが認められる。

(a) 改訂レシピ(乙173)

改訂レシピは,詳細な調査結果に基づき震源断層を推定する場合に地震規模を算出する手法として,Murotani et al. (2015)等の知見に基づき,地震モーメントに応じた3段階のスケーリング則を提案しており,具体的には, $Mo<7.5\times10^{18}\,\mathrm{N}\cdot\mathrm{m}$ の場合にはSomerville et al. (1999)のスケーリング則を, $7.5\times10^{18}\,\mathrm{N}\cdot\mathrm{m}$ \leq $Mo\leq1.8\times10^{20}\,\mathrm{N}\cdot\mathrm{m}$ の場合には入倉・三宅(2001)を,地震モーメントがこの閾値を超える場合には Murotani et al. (2015)のスケーリング則を適用すべきであるとしている。

そして、Murotani et al. (2015)は室谷ほか(2009)等を踏まえた 平均すべり量が飽和することを前提とした知見であるところ、改訂 レシピは、「ここでは、利便性に配慮して機械的に値が求められる ように、式の使い分けの閾値を決めているが、原理的には断層幅や 平均すべり量が飽和しているかどうかでスケーリング則が変わるため、断層幅が飽和していない場合(1-a)式は(2)式を、飽和している 場合(1-b)式は(3)式あるいは(4)式を用いる方が合理的である。また、断層幅と平均すべり量の両方が飽和している場合は(4)式を用いることが望ましい。震源断層の面積を算出するにあたっては、この点に

も配慮して、用いる式を選択することが可能である。」 (なお、ここで(2)式は Somerville et al. (1999)の、(3)式は入倉・三宅(2001)の、(4)式は Murotani et al. (2015)の、各スケーリング則を指す。)と注記している。

また、地表の活断層の情報を基に簡便化した方法で震源断層を推定する場合において地震規模を算出する際には、「活断層長さがおおむね80㎞を超える場合は、松田(1975)の基になったデータの分布より、松田(1975)の適用範囲を逸脱するおそれがあるため、例えば、(ア)の方法や『活断層の長期評価手法(暫定版)』報告書(地震調査委員会長期評価部会、2010)記載の方法など、過去の地震の例を参考にしながら、適宜適切な方法でマグニチュード(地震モーメント)を算定する必要がある。」(なお、ここで「(ア)の方法」とは、Murotani et al. (2015)等に基づく3段階のスケーリング則を指しており、「『活断層の長期評価手法(暫定版)』報告書記載の方法」とは、長期評価手法(乙151)記載の手法(後記(b)参照)を指す。)としている。

(b) 長期評価手法(乙151)

長期評価手法には、「長大な活断層で発生する地震の規模」との表題の下、「長さが100kmを超えるような長大な活断層については、活動時のずれの量が飽和する可能性(中略)が指摘されているため、複数の断層が連動して地震を発生させると考えるカスケードモデルの採用について検討した。しかし、ずれの量の算出方法については今後も検討する必要があることから、新手法においては、W.G.C.E.P (1995)の定義によるカスケードモデルを採用することは見合わせ、長さが断層面の幅の4倍に満たない場合には松田(1975)のL-M式に基づき地震規模を想定し、それを超える場合

には長さが4倍を超えないように区分した区間が連動するモデルを 設定した。地震規模の算出には、モーメントマグニチュードを使用 し、後に気象庁マグニチュードへ変換する」としている。

(c) 中央構造線の長期評価(乙33)

る。

地震本部は、その施策の一つとして、「陸域の浅い地震や海溝型地震の発生可能性の長期的な確率評価」の実施を掲げ、平成17年4月までに陸域の活断層として98断層帯の長期評価を行い公表した。このうち、中央構造線断層帯(金剛山地東縁一伊予灘)の評価については、平成15年2月12日に公表されたが、その後の調査結果により活動履歴などに関する新たな知見が得られたとして評価の見直しが行われ、平成23年2月18日付けで標記の長期評価が取りまとめられた。

このような経過で取りまとめられた中央構造線の長期評価では、「四国全域や断層帯全域が同時に活動する可能性も考慮すると、その長さはそれぞれ200km、300kmとなり、松田(1975)による経験式の適用範囲外となる。この経験式によると、長さ80kmの断層でマグニチュード8.0となる。このため、このような断層長さが非常に長い区間について、ここではマグニチュード8.0もしくはそれ以上と評価することとした」として、松田式の適用範囲が断層長さ80km程度であることを前提として、地震規模が推定されてい

もっとも、中央構造線の長期評価においては、断層帯全体の地震 規模について、平均すべり量と地表変位量とを7 mと想定してM w 8. $1 \sim 8$. 4と推定していることが認められ、この点は、地表最 大変位量は平均すべり量の $2 \sim 3$ 倍であるとの室谷ほか(2009)等の 知見と整合しない内容となっている。

c すべり量の飽和に関する知見等

また、一件記録によれば、すべり量が飽和するとの見解に与する知 見として、次のような論考が存在することが認められる(なお、債務 者は、このほかにも、原子力規制委員会における審査の過程において、 同旨の知見として複数の論考を指摘している(乙296)。)。

(a) 室谷ほか(2009)

この論文は、概ね長さ80㎞を超える長大断層に係る震源断層のモデル化に当たって行った長大断層に関するスケーリング則の検討に関する経過報告を目的とするものであり、その中で、「震源断層の断層面積と地震モーメントから平均すべり量が求められるので、地表での最大変位量(Dsurf)と震源断層での平均すべり量(Dsub_ave)の関係をみると、(中略)Dsurf はDsub_ave の概ね1~3倍の間に収まっていることがわかる。長大断層に限ると、Dsub_ave と Dsurf は $2\sim3$ 倍の関係となる」としている。

もっとも、「長大断層に関しては、観測事例が少なく日本国内では1例のみである。今後はデータの蓄積とともにメカニズムの違いの影響やアスペリティに関する微視的断層パラメータの関係式などについて検討する必要がある」ことや、当該国内での1例は濃尾地震であるところ、「日本国内では、長さ80kmを超えるような長大断層での地震に対して、地震波形記録を用いて断層面上のパラメータを推定した結果は濃尾地震のみ(中略)であるが、古い地震記録のためデータの精度等の注意が必要である」ことを指摘している。また、室谷ほか(2009)の元データでは、1999年集集地震(Chichi)で地表最大変位量が10m超となっているほか、Stirling et al.(2002)の元データの中には平均すべり量が6m超となるものが見受けられる。

(b) 室谷ほか(2010)

この論文は、室谷ほか(2009)を受け、地表地震断層で観測されたパラメータと震源断層で推定されたパラメータの関係を示し、震源断層面積と地震モーメントに関するスケーリングについて検討した結果を報告するものであり、その中で、「震源断層長さと地表地震断層長さがほぼ1:1となっており、さらに地表で観測された最大変位量(Dsurf)と震源断層での平均すべり量(Dsub_ave)の関係をみると、長大断層に限れば Dsurf は Dsub_ave の概ね2~3倍に収まり、震源断層での最大すべり量(Dsub_max)とはほぼ1:1の比例関係になることが分かった。次に、震源断層長さと Dsurf の関係は、(中略)断層長さがほぼ100kmで Dsurf が約10mに飽和することが分かる。」としている。

もっとも、日本国内の元データは、濃尾地震に兵庫県南部地震を追加した2事例である。また、元データのうち断層長さ $150 \,\mathrm{km}$ 以上のものは、Stirling et al. (2002)のデータ中の3事例とその他の3事例を併せた6事例だけのようであり、 $400 \,\mathrm{km}$ を超えるものは1906年サンフランシスコ地震のみである。

(c) 増ほか(2011)

この論文は、断層長さ80kmで平均すべり量が約3mで飽和するという知見を明らかにしている。同論文は、「内陸地震のうち、特に横ずれ断層に起因する地震を想定する場合は、例えば中央構造線のように、その全長がきわめて長いとき、『強震動予測のためのレシピ』だとアスペリティの面積が断層面積の50%を超え背景領域のすべり量が負となって、断層モデルが設定できないことがあり、課題となっている」、「本論文の方法によれば、平均すべり量Dは、震源断層長さLが約80kmを超えるとほぼ300cmで一定となるこ

とがわかる。したがって、本論文でいう長大断層とは約80kmより長い断層であるといえよう。この結果は、従来から指摘されているように、平均すべり量Dは、小地震では震源断層の長さLに比例し、大地震になるにつれて震源断層の長さLにかかわらず一定になると考えられること(中略)と整合する結果である」、「従来から課題となっていた長大断層のパラメータが設定できるようになったが、本論文で用いた短周期レベルのデータは5地震と少なかった。したがって、今後、強震動予測の精度をさらに向上させるには、マグニチュード8クラスの地震データを含む数多くの内陸地震の短周期レベルの蓄積を行う必要がある」などとしている。

なお、壇ほか(2011)の元データでは、国内では最も断層の長い濃 尾地震ですら断層長さ約80kmである。

- d すべり量が飽和するとの知見に対する指摘
 - 一方, すべり量が飽和するとの知見に対しては, 次のような指摘が あることが認められる。
 - (a) 愛媛新聞のインタビューにおける纐纈教授の発言(甲C199) 纐纈教授は、平成27年3月21日付け紙面で報道された標記のインタビューにおいて、「印象だが、中央構造線断層帯があれだけ近いのに、この程度で済むのかなという気はする。滑り量(断層がずれる長さ)は、断層の連動が長くなれば大きくなるという考え方と、断層が連動しても滑り量は変わらないという考え方がある。中央構造線断層帯がどちらかは分からないが、54キロ(四電の従来想定)から480キロに延ばして、これだけ(基準地震動が570ガルから最大650ガル)しか変わらないのは違和感がある。(基準地震動が)もう少し大きくなってもいい気はする」と述べた。
 - (b) 国立研究開発法人防災科学技術研究所社会防災システム研究部門

長兼レジリエント防災・減災研究センター長・藤原広行(以下「藤原部門長」という。)の発言(甲D550の1)

藤原部門長は、平成24年6月19日に開かれた、原子力安全・保安院の「第5回 地震・津波に関する意見聴取会(地震動関係)」において、遠田晋次委員より、室谷ほか(2010)に関して、強震動の専門家の間でどのぐらい受け入れられているのか質問されたのに対し、「1つの仮説としての検討結果が学会で発表されたというレベルである。」と述べた。

(c) 専門家フォーラムにおける発言(甲D302, 304)

文部科学省の原子力基礎基盤研究委託事業による委託業務として 東京大学が実施した「原子力施設の地震・津波リスクおよび放射線 の健康リスクに関する専門家と市民のための熟議の社会実験研究」 に基づき、専門家の出席を得て平成25年12月21日に「原子力 発電所に影響を及ぼす断層とそれによる揺れ・変位はどう推定され ているのか?」とのテーマで開かれた「第2回専門家フォーラム」 において、出席者の中から、「カスケードモデルとスケーリングモ デルっていうのは、簡単に言うと、断層の長さが2倍になった場合、 モーメントが2倍になるのがカスケードモデルで、この場合はマグ ニチュードは0.2変わるだけです。この時の仮定は断層の長さが 変っても、断層の幅もすべり量は変わらないということです。一方, スケーリング則では断層の幅もすべり量も断層の長さに比例するの で、モーメントは断層の長さの3乗で効いてきますので、マグニチ ュードの変化はその0.3倍の0.6になります。つまり、M8. ○の地震を起こす断層の長さが2倍になったときM8.6になるっ ていうのがスケーリング則で、M8.2になるのがカスケードモデ ルです。それのどっちをとるかというと、これがまだ議論がありま

す。」との発言が見られた。

e 検討

(a) 債務者が想定する最大の断層長さは480kmというのであるから、仮に、すべり量が飽和するとの知見を採用しないとなれば、上記想定の下における地震規模は、債務者が松田式を使って推定したそれをはるかに上回ることは明らかである。そうであれば、すべり量が飽和するとの知見に依拠するには慎重な検討が必要であると考えられる。

そして、上記り、dによれば、地震本部は、すべり量が飽和すると考える場合とそうでない場合のそれぞれについて異なる計算式を挙げているし、地震学者の中には、すべり量が飽和するとの知見に対し、疑問を投げかけたり、仮説の一つに過ぎないと評価したりする者があるなど、上記の知見が必ずしも専門家の間で確立した知見であるかといえば疑問なしとしない。その上、すべり量が飽和するとの知見に与する論考も、元データの中に国内の地震が含まれていなかったり、含まれていても濃尾地震の1事例のみだったりするなど、海外の地震についていえることがそのまま日本の地震にも当てはまるかについては意見もあり(甲D322、乙256)、サンプルの範囲が限定的であることは否定し難い。加えて、上記cによれば、上記の論考が標榜する、又は論考の内容から導かれる飽和すべり量を超える地表最大変位量を記録したデータが一つならず存在することも窺える。

(b) しかし、上記 b によれば、地震本部は、地震規模の計算方法の提言に当たり、すべり量が飽和するとの見解を前提とし、中央構造線の長期評価において松田式の適用範囲を断層長さが概ね80kmまでに限定していることからすると、少なくとも地震本部は、すべり量

が飽和するとの見解に親和的であるというべきである。しかも、上記dの事情や、すべり量が飽和する見解に与する論考が依拠するデータに関する上記の憾みがあるからといって、地震学界において、すべり量が飽和するとの見解が異端であると決めつけるには足りないどころか、地震本部の設置目的、これを構成する委員の属性に加え、上記d(c)の専門家フォーラムの出席者において、上記認定に係る発言に続けて「おそらく非常に大きな地震は、たぶんカスケード的であろうというふうに我々も考えています」などとすべり量が飽和することを前提としたモデルを支持するものと受け取れる発言をしていること(甲D302)にも照らすと、むしろ、すべり量が飽和するとの知見は、さらなるデータの集積やそれに基づく検証の余地があるとはれえ、最新の科学的知見としては有力な見解の一つであることは確かであるといわねばならない。

なお、債権者らは、松田名誉教授自身が中央構造線四国断層帯(断層長さ180km)に松田式を適用しているとか(甲C34)、地震本部も言及するWells and Coppersmith(1994)はすべり量が飽和する見解を採用していないとか(甲D552)、栗山ほか(2008)もすべり量が飽和しないことを前提としている(甲D122)などと指摘する。しかし、松田名誉教授は、債権者らが指摘する論考の中で、中央構造線四国断層帯のように例外的に大きな断層長さを持つ「特定断層」については、当該地帯の最大地震規模を決める際には一応考慮外としたと述べているのであるから(甲C34)、松田名誉教授が断層長さの如何を問わず松田式を適用すること、ひいては、すべり量が飽和するとの見解を否定していると即断することはできない。また、Wells and Coppersmith (1994)は、地下断層長さと地表断層長さの関係を定量的に評価した研究であることが窺え

(乙151),上記論考がすべり量が飽和しない旨の立場を鮮明にする趣旨のものと断定できるわけでもない。さらに、栗山ほか(2008)は、その内容からして、すべり量の飽和を前提とするカスケードモデルとそうでないスケーリングモデルの優劣を明らかにすることを目的とした論考とまではいえない(甲D122)。したがって、債権者らの上記指摘はいずれも当を得ないものというほかはないし、一件記録を精査しても、ほかにすべり量が飽和しないとの知見を取りまとめた論考は見当たらない。

(c) してみると、債務者においてすべり量が飽和するとの知見に依拠したことには一応の合理性があるものというべく、すべり量が飽和するとの知見に依拠した基準地震動の策定につき、地震ガイド、ひいては設置許可基準規則に適合するとした原子力規制委員会の判断が不合理であるとはいえない。

なるほど、上記(a)で指摘したところによれば、債務者がすべり量が飽和するとの知見に依拠したことの合理性に関する確信を得るためには、なお慎重な検討を要することは承認しなければならない。しかし、そのような検討は、すべり量が飽和するとの知見に与する地震学者、これに異論を唱える地震学者、本件申請をめぐる審査に携わった原子力規制委員会の関係者等の証人尋問を経るなどして、例えば、上記知見が専門家の批判に耐えられるかどうか、地震学界において上記知見が占める位置、それらの事情を踏まえた基準地震動の策定に当たって上記知見に依拠することの許容性を基礎付ける事実を慎重に認定する作業が不可欠であるところ、それは、本件のような保全手続にはなじまないものというべきである。

(イ) 経験式自体が内包する不確かさの考慮について 債権者らは、上記第3の3(1)債権者らの主張欄ア(ア)b(a)のとおり主張 する。そして、松田式も武村式(1990)も、国内で発生した地震によって得られた観測記録を基にして断層長さ(松田式)又は気象庁マグニチュード(武村式(1990))から地震規模を割り出す経験式であること(甲D102、審尋の全趣旨)、地震ガイドでは「震源モデルの長さ又は面積、あるいは単位変位量(1回の活動による変位量)と地震規模を関連付ける経験式を用いて地震規模を設定する場合には、経験式の適用範囲が十分に検討されていることを確認する。その際、経験式は平均値としての地震規模を与えるものであることから、その不確かさも考慮されている必要がある。」とされていること(乙39)、以上の事実が認められる。必要がある。」とされていること(乙39)、以上の事実が認められる。

しかるに、債務者は、松田式を適用し(5 4 kmケース、6 9 kmケース)、又は概ね8 0 km以下になるように断層長さを区分し、区分した断層長さごとに松田式を適用して算出した地震規模を合計することによって(1 3 0 kmケース、4 8 0 kmケース)地震規模を推定し、これをそのまま耐専式やその他距離減衰式のパラメータとして用いており、その過程で松田式そのものが内包する不確かさを別途考慮した形跡は見当たらない(前提事実)。したがって、上記地震規模の設定の在り方は、地震ガイドの求めに沿っていない疑いもないではない。

しかし、地震ガイドに上記のような定めがあるとはいえ、設置許可基準規則解釈別記2や地震ガイドにおいて、経験式自体が内包する不確かさを考慮する手法について具体的に明示されているわけではないから(乙39,68),地震規模の推定はともかく、結果として得られた地震動評価において、上記不確かさを十分に考慮したものといえるのであれば、そのような地震動評価が結論において新規制基準に適合する旨判断することも不合理ではないという余地がある。そして、債務者は、耐専式を適用したケースについては、内陸補正をしないことによって、結果として約1.5倍の不確かさを考慮していることになるところ、松田

式が内包する不確かさを含む、応答スペクトルに基づく地震動評価全体 での不確かさの考慮が、この約1.5倍で尽くされている可能性も否定 できないし(なお、耐専式を適用していないケースについては、上記の 手法による不確かさの考慮は施されないことにはなるけれども、その他 距離減衰式を適用したケースの地震動を約1.5倍したとしても耐専式 を適用したケースの地震動を大きく上回ることはないと考えられるから, この点は結論には影響しないものと考えられる。甲D98の1)、その 他距離減衰式との比較から耐専式の適用可能性が疑問視されるケース $(5.4 \, \text{km}, 6.9 \, \text{km}, 1.3.0 \, \text{km}$ の各ケースにおける北傾斜モデル)につい ても保守的に耐専式を適用し、中央構造線の長期評価が想定する断層長 さ (360km) を大きく上回る断層長さ (480kmケース) を想定する などして、一定程度の不確かさを考慮しているのであるから、そのよう にして得られた地震動評価は,結論において保守的な想定となっている と考えることもできる。これらの点を踏まえると、債務者の地震動評価 も一応合理的であるというべきである。この点について確信を得ようと すれば、経験式が内包する不確かさの程度やその不確かさを地震規模を 推定する過程において考慮する手法の在り方をめぐる、地震ガイドの策 定経過や地震学界における議論の状況等について,地震学者や地震ガイ ドの作成に携わった担当者等の証人尋問を通じて慎重に認定すべきであ るけれども、それは、本件のような保全手続には必ずしもなじまないも のというべきである。

この点に関する債権者らの主張は、採用することができない。

(ウ) 断層長さの認識論的不確定性について

債権者らは, 第3の3(1)債権者らの主張欄ア(ア)b(b)のとおり主張する。

しかし、54㎞ケースは三崎沖引張性ジョグの中央から敷地前面海

域の断層群を経て串沖引張性ジョグの中央までの連動を想定したもの, 69㎞ケースは、三崎沖引張性ジョグの南西端から串沖引張性ジョグ の北東端までの全部の連動を想定したものであるから、本件敷地との 関係で両者における等価震源距離にはほとんど差がないものと考えら れるのに対し、90kmケース及び103kmケースは、69kmケースで 想定されている部分破壊の範囲をさらに北東方向に延長するものであ るから、本件敷地との関係で69kmケースよりも等価震源距離が長く なることは明らかである。また、130kmケースは、三崎沖引張性ジ ョグの中央から川上断層北東端まで全て連動することを想定した場合 (133km) にほぼ匹敵する長さであって(乙269), 103kmケ ースで想定されている部分破壊の範囲をさらに北東方向へ拡大するも のにほかならないから、断層長さが80kmを超えるケースについて概 ね80km以下になるように断層長さを区分し、区分した断層長さごと に松田式を適用して算出した地震規模を合計することによる地震規模 の推定が一応合理的であると考えられることを前提とする限り(上記 (ア)), 90kmケースや103kmケースで想定される最大の地震規模が 130kmケースのそれを超えることは理論上考え難いというほかない。 そうすると、90 kmケース及び103 kmケースのいずれについても、 等価震源距離及び想定される最大の地震規模は, 6 9 kmケースのそれ らと130kmケースのそれらの間に収まることになるものと考えられ る。そうであれば、債務者は、69kmケースと130kmケースについ て地震動評価を行ったというのであるから, その中間に収まる 9 0 km ケースと103kmケースを想定しなかったからといって、直ちにその ことが合理性を欠くとまでいうことはできない。

この点に関する債権者らの主張は、採用することができない。

(エ) 中央構造線の長期評価との比較について

債権者らは、第3の3(1)債権者らの主張欄ア(ア)cのとおり主張する。ところで、中央構造線の長期評価は、想定される地震規模の計算に当たり、①「石鎚山脈北縁西部一伊予灘 川上断層一伊予灘西部 断層」については、断層幅を「鳴門断層及び鳴門南断層 - 石鎚断層」の数値(20~30km)と同じと仮定し、「ずれの量」の最大値も同断層の数値(2~7m)と同じと仮定して、Mw7.4~8.0と算出し、また、②「断層帯全体 当麻断層 - 伊予灘西部断層」については、各活動区間において推定した「ずれの量」を基に算出した地震モーメントの総和から求めたケース(Mw7.9~8.3)と、最大の想定として「ずれの量」を全ての区間で7mと仮定して各活動区間において地震モーメントを算出してその総和から求めたケース(Mw8.1~8.4)の2つのケースから算出した。

中央構造線の長期評価が、①における「ずれの量」の最大値を上記のとおり仮定したのは、「石鎚山脈北縁西部一伊予灘 川上断層一伊予灘 西部 断層」と「鳴門断層及び鳴門南断層 - 石鎚断層」の長さがいずれも同程度(130km)とされたことによる。そして、「鳴門断層及び鳴門南断層 - 石鎚断層」の「ずれの量」は、文献(岡田・堤(1997)、Tsutsumi and Okada(1996))において父尾断層(徳島県阿波町付近)で求められた地表のずれの量が用いられている。また、中央構造線の長期評価が、②において断層幅を上記のとおり仮定したのは、「石鎚山脈北縁西部一伊予灘 川上断層一伊予灘西部 断層」の断層幅が不明であることに基づく。(以上につき、乙33)

以上によれば、上記①及び②における地震規模の計算の基礎とした数値の選択、当該数値を選択した事情及び当該選択に係る数値の出処のいずれにおいても格別不合理な点は見当たらない。

しかし、ある震源断層において想定されるモーメントマグニチュード

の計算の基礎となる地震モーメントの数値は、当該震源断層全体の平均 すべり量に比例するというのであり(乙173), また, 地表最大変位 量は断層長さがほぼ100kmで約10mに飽和する旨及び長大断層に限 れば地表最大変位量は平均すべり量の概ね2~3倍に収まる旨をそれぞ れ指摘する知見(室谷ほか(2010))があり、なおかつ、室谷ほか(2010) を採用することに一応の合理性が認められることは上記説示のとおりで ある。そうであれば、検討用地震の震源断層に関する地質調査結果によ って当該震源断層のより具体的な地表最大変位量と目すべきデータが得 られるのであれば、そのデータを基に、室谷ほか(2010)によって当該震 源断層全体の平均すべり量を試算した上で、これを用いて地震モーメン ト、ひいてはモーメントマグニチュードを算出する手法は、それはそれ で一応の合理性が認められるものというべきである。そして、債務者は、 堤・後藤(2006)において、中央構造線断層帯の地質調査の結果として、 主な活断層群ごとに測定して得られた地表変位量に室谷ほか(2010)が指 摘する知見の内容を加味して上記のとおりモーメントマグニチュードを 算出したことが一応認められる(乙31)。また,債務者は,130㎞ ケース及び480kmケースのいずれについても、その適用限界を考慮し つつ松田式を適用して気象庁マグニチュードを算出した結果, 130km ケースにつきM8.1,480kmケースにつきM8.5と評価したこと が一応認められるところ(乙31),気象庁マグニチュードを前提とし た地震規模は、中央構造線の長期評価におけるそれ(「石鎚山脈北縁西 部―伊予灘 川上断層―伊予灘西部 断層」及び「断層帯全体 当麻断 層-伊予灘西部断層」のいずれについても「8.0もしくはそれ以上」。 乙33) にも沿うものである。

してみると、債務者が130kmケース及び480kmケースにおいて評価した各地震規模が中央構造線の長期評価におけるそれらと同程度の断

層長さを持つ活断層群について示された各地震規模よりも小さい部分が あるからといって、債務者による上記地震規模の評価が過小であり、合 理性を欠くとまでいうことはできない。

この点に関する債権者らの主張は、採用することができない。

(オ) 解析ケースの一部につき耐専式の適用を排除したことについて 債権者らは、上記第3の3(1)債権者らの主張欄ア(イ)aのとおり主張する。

耐専式は、マグニチュードと等価震源距離等をパラメータとして応答スペクトルを得る距離減衰式であって、過去に発生した実際の地震のデータを回帰分析し、地震動の応答スペクトルの平均的な値を経験的に算出するものである。

耐専式は、他の距離減衰式や従来の経験的手法に比べ、①解放基盤表面の強震動として評価できること、②水平方向及び鉛直方向の強震動が評価できること、③震源の拡がりを考慮できること、④敷地における強震観測記録を用いて地域特性等が考慮できることといった長所が指摘されている(甲D112, 乙31)。

しかし、耐専式は、その構築の元になった地震のデータには、当該観測点と断層との距離を8km程度とするケースのものは含まれていないため、当該等価震源距離が任意のマグニチュードに応じて決まる一定の値(以下「極近距離」という。)を下回る場合には、耐専式の適用は相当でないとされている(乙11)。もっとも、国内の地震記録中には、例えば、鳥取県西部地震における賀祥ダム(M7.3、等価震源距離6km)や兵庫県南部地震における神戸大(M7.3、等価震源距離16km)にあっては、内陸補正を施すことによって乖離がほぼ解消される結果となり、したがって、等価震源距離が極近距離を下回るケースであっても耐専式の適用が可能(ただし、内陸補正を要する。)と考えられる場合が

あることが窺えるし(甲D112),入倉名誉教授も,極近距離の近傍の条件であっても耐専式の適用性は個別に検証されるべきであり,極近距離よりも近くなる場合であっても,断層モデルで評価したものと比較して,耐専式を適用した場合の有効性を検証すべきである旨指摘していることが認められる(乙170)。そうであれば,等価震源距離が極近距離近傍にあるとか,又はそれを下回るからといって,直ちに耐専式の適用を排除することは相当ではなく,その適用性を個別に吟味すべき筋合いである。地震ガイドにおいて,「応答スペクトルに基づく地震動評価において,用いられている地震記録の地震規模,震源距離等から,適用条件,適用範囲について検討した上で,経験式(距離減衰式)が適切に選定されていることを確認する」とされているのも(乙39),上記の趣旨に出たものと解するのが相当である。

そして、債務者は、54kmケース、130kmケース及び480kmケースにつき、それぞれ断層の傾斜角を鉛直断層とする場合(鉛直モデル)及び北傾斜断層とする場合(北傾斜モデル)をそれぞれ想定して評価し、他の距離減衰式によった場合と比較したこと、その結果、480kmケースの鉛直モデル及び北傾斜モデルはいずれも想定される地震規模に応当する等価震源距離が極近距離も大きくなり、したがって、耐専式の適用可能な範囲に収まったこと、130kmケース及び54kmケースの各北傾斜モデルは、いずれも想定される地震規模に応当する等価震源距離が極近距離よりも小さくなったものの、震源近傍における適用性を検証したデータが既に存在する範囲にある上に、内陸補正を適用することによって他の距離減衰式による評価と整合的であったことが認められる(乙11)。

これに対し、54kmケース及び130kmケースの各鉛直モデルについては、想定される地震規模に応当する等価震源距離が極近距離よりも小

さいのみならず、内陸補正を施しても、なお他の距離減衰式による評価 と重なるところがほとんどなく、大きく乖離する結果となったというの である(乙11)。極近距離よりも等価震源距離が小さいケースであっ ても,個別に検討し,内陸補正を施すことによって耐専式の適用に耐え られるケースがあることは、鳥取県西部地震(賀祥ダム)及び兵庫県南 部地震(神戸大)の例で見たとおりではあるけれども、上記の各ケース において耐専式の適用を可とする評価に至ったのは、内陸補正を施すこ とによって実際の地震記録との乖離が解消されることが確認されたから にほかならないのであって(甲D112),上記の各ケースは、内陸補 正を施したにもかかわらず、なお他の距離減衰式との乖離が解消されな い場合にまで耐専式の適用を正当化する根拠になるとまではいえない。 これに加えて、もともと耐専式が、その構築に用いられた地震記録が敷 地前面海域の断層群のように敷地との距離が8kmという至近に位置する ケースを含んでいない距離減衰式であるという成り立ち(乙11,31) も考慮しないわけにはいかない。これらの事情によれば、54kmケース 及び130kmケースの各鉛直モデルにおいて耐専式を当てはめた結果が 他の距離減衰式を当てはめた結果との比較において乖離が大きかったと いう事実は、要するに、上記各モデルに対する関係で耐専式を適用する ことには難があることを示すものであって、現実に上記結果に沿う地震 動がもたらされる可能性があることを示唆するものとはいい難いのであ る。

そうであれば、耐専式に上記の長所があることを前提としても、債務 者が上記各モデルについて耐専式を適用しなかったことが不合理である とか、ましてや、恣意的であるなどということはできない。この点に関 する債権者らの主張は、採用することができない。

(カ) 不確かさの考慮について

債権者らは、上記第3の3(1)債権者らの主張欄ア(イ)bのとおり主張する。

しかし、耐専式のばらつきや不確かさの考慮をいう点については、経験式そのものが内包する不確かさをそのまま当該敷地における地震動評価に当たって考慮しないからといって、直ちにそのような地震動評価が合理性を欠くとはいえないことは、上記説示のとおりであり、この点は、松田式と同じく過去に発生した実際の地震のデータを分析して平均的な値を経験的に算出することによって得られた耐専式においても同様にあてはまるものというべきである。この点に関する債権者らの主張は、採用することができない。

また、債務者が、応答スペクトルによる地震動評価に際し、断層角を 南傾斜とするモデル(南傾斜モデル)を対象とした地震動評価をしてい ないことの合理性については、次のようにいうことができる。

債務者は、基本震源モデルを設定するにあたり、震源断層は横ずれ断層と推定できること、反射法探査、アトリビュート解析結果等を踏まえて、断層角については鉛直モデルを基本とする一方、断層モデルを用いた手法による地震動評価における不確かさとして、断層角が北傾斜であること(北傾斜モデル)と並んで「断層角が南傾斜80度であること」(南傾斜モデル)を設定している(乙11)。また、南傾斜モデルを不確かさの一つとして考慮することは、平成21年10月15日に原子力安全委員会が開いた地震・地震動評価委員会及び施設健全性評価委員会第34回ワーキング・グループ3において、出席した委員から佐田岬の隆起や中央構造線を境にして数m表面で段差が見られるなどの指摘を受け、南傾斜モデルの検討を提案された経緯も窺える(甲D541)。そうであれば、応答スペクトルに基づく地震動評価にあっても、断層モデルを用いた手法による地震動評価における

と同様に、南傾斜モデルを不確かさの一つとして考慮すべきであると も考えられる。

また、債務者は、耐専式の適用において、断層面の南傾斜を想定すると、断層面が敷地に近くなり、耐専式の適用範囲からさらに外れることになる旨主張するけれども、480kmケースは鉛直モデルですら内陸補正を施さなくても耐専式の適用に耐えられること、130kmケースは54kmケースとともに北傾斜モデルにつき内陸補正を適用するという限度で耐専式による評価が可能であること、130kmケースと54kmケースのうち各鉛直モデルはそもそも耐専式を用いなかったこと、以上の事実が認められるから(乙11、31)、同じケースにおいて南傾斜モデルでは北傾斜モデルや鉛直モデルの場合以上に等価震源距離が小さくなるとしても、そうだからといって、全てのケースについて南傾斜モデルが耐専式の適用範囲外であるなどと決めつけることはできないし、耐専式を除く他の距離減衰式による評価すら行わないことを可とすることができるかといえば、疑問なしとしない。

b さればといって、480kmケースの南傾斜モデルが耐専式の適用範囲から外れる旨の債務者の主張は、等価震源距離の観点からして一定の合理性があることを否定できないものというべく、上記の場合に耐専式がなお適用可能であるかどうかは明らかではない。また、南傾斜モデルの不確かさを考慮するために、耐専式以外の等価震源距離をパラメータとする距離減衰式を適用する余地があるとしても、いずれの距離減衰式を用いれば精度よく地震動評価を得ることができるかも明らかではない。これに加えて、54km及び130kmの各ケースにおける鉛直モデルに耐専式を適用せず、その他距離減衰式を適用することが不合理でないといえること(上記(オ))、耐専式には他の距離減衰式にはない利点があること、断層最短距離をパラメータとするその他距

離減衰式では断層傾斜角の不確かさを考慮し難いとされていることも 踏まえると、債務者が応答スペクトルによる地震動評価において南傾 斜モデルを不確かさの一つとして考慮しなかったことは一応合理的で あると認められる。この点に関する債権者らの主張は、採用すること ができない。

さらに、債権者らは、上記主張において、耐専式の適用に当たって 内陸補正を施さないのは、新潟県中越沖地震を踏まえて短周期レベル を1. 5倍する必要がある旨地震ガイドにおいて求められていること を受けたものに過ぎず、単に内陸補正を施さないだけでは不確かさの 考慮として十分でない旨述べる。しかし、地震ガイドが新潟県中越沖 地震を前提とした不確かさとして考慮を求めているのは、断層モデル を用いる手法による地震動評価において震源モデルを設定する際のア スペリティの応力降下量に関する指摘であって(乙39),耐専式を 適用して応答スペクトルによる地震動評価を行う場合にも当然に当て はまる求めであるとはいえない。そして、一般に、内陸補正は、耐専 式が海洋プレート内地震やプレート間地震から得られたデータベース に多くを依拠していることに鑑み、応答スペクトルによる地震動評価 に耐専式を適用する際、内陸地殻内地震について耐専式をそのまま適 用した場合よりも全体的に小さい地震動評価を得て、もって、適正な 地震動評価を行うために施される処理であると考えられるところ(乙 269),債務者は内陸補正を施していないのであるから、より保守 的に地震動評価を行っているものと一応評価することができる。この 点に関する債権者らの主張は、その前提において失当であり、採用す ることができない。

- イ 断層モデルを用いた手法による地震動評価について
 - (ア) 改訂レシピによる見直しの必要性について

債権者らは、上記第3の3(1)債権者らの主張欄イ(ア)aのとおり主張する。そして、(a)債務者が断層モデルを設定するに当たって基本として用いたスケーリング則である壇ほか(2011)は平均すべり量が飽和するのは断層長さ80kmであるとしていること(甲D106)、(b)債務者が平均すべり量が飽和することを示した知見とする室谷ほか(2010)も地表最大変位量が飽和するのは断層長さ100km程度であるとしていること(乙163)、(c)改訂レシピはこれらの知見を踏まえて断層幅及びすべり量が飽和すると認める閾値を設定したものと窺えること(乙173)、以上の事情を指摘することができ、それらによれば、少なくとも54kmケースをもってすべり量が飽和する領域にある断層であると評価することの合理性には疑問の余地がないではない。

しかし、応力降下量の設定については、レシピにおいては、すべり量の飽和に関係なく、「震源断層の長さが震源断層の幅に比べて十分に大きい長大な断層に対して、円形破壊面を仮定することは必ずしも適当ではないことが指摘されている」ことから、そのような長大な断層についてはFujii and Matsu'ura (2000)による震源断層全体の応力降下量3.1 MPaを暫定値として用いる旨示されていたところ(乙38)、54kmケースにおける断層長さ(54km)は、断層幅13km(乙11)の4倍を上回る長さであること、改訂レシピにおいても、「断層幅のみが飽和するような規模の地震に対する設定方法に関しては、今後の研究成果に応じて改良される可能性がある」との留保が付されていること(乙173)に照らすと、債務者が54kmケースにおける静的応力降下量として3.1 MPaを設定したことが直ちに合理性を欠くとまではいえない。

また, 130kmケースは, 震源断層面積を基準とする限り, 改訂レシ ピの上ではスケーリング則として断層幅と平均すべり量が飽和すること を前提とするスケーリング則の適用下限値には達しないかもしれないが, 壇ほか(2011),室谷ほか(2010)等の知見に照らせば、断層長さの点で、すべり量が飽和する領域にあると評価することも可能である。そうであれば、債務者が130kmケースにおける静的応力降下量として3.1M Paを設定したことが直ちに合理性を欠くともいえない。

もちろん、レシピが改訂レシピに改められた経緯やその過程で行われた議論の経緯、改訂レシピにおいてスケーリング則を使い分ける閾値を地震モーメントの値ではなく震源断層面積をもって代えることの可否、改訂レシピが強震動評価の目安ないし手法の一つであるにとどまらず、これに沿わない設定について直ちにその合理性を失わせるほどの確実性を有するかどうかによっては、静的応力降下量をめぐる債務者の設定が合理性を欠くものと評価される余地があるけれども、それには、レシピの改訂に携わった地震本部の担当者、地震学者、審査に携わった原子力規制委員会の関係者等の証人尋問を経るなどして慎重に見極めるべき筋合いのものであって、その見極めは本件のような保全手続にはなじまないものといわねばならない。

この点に関する債権者らの主張は、採用することができない。

なお、債権者らは、レシピの改訂に関連して、69kmケースを別途検討することが必要であるとも主張するけれども、同主張も、Fujii and Matsu'ura (2000)を基にした断層全体の静的応力降下量3. 1 MPaを設定することの相当性のなさを前提とした主張であるから、上記説示に照らし、採用することができない。

(イ) 平均応力降下量及びアスペリティの応力降下量の設定について 債権者らは、上記第3の3(1)債権者らの主張欄イ(ア)bのとおり主張する。

もっとも、上記主張のうち、債務者において、すべり量が飽和すると の知見を採用したこと、地震規模を想定するに当たり中央構造線の長期 評価が採用した地表すべり量(7m)によらなかったこと,以上2点の 想定の合理性欠如をいう点については,上記説示のとおりであって,採 用することができない。

債権者らの上記主張のうち、断層モデル解析で地震動評価を行う際の主なパラメータ中、平均応力降下量及びアスペリティの応力降下量をそれぞれ設定するに当たり、壇ほか(2011)の値をそのまま採用することは、①平均応力降下量につき、本件の検討用地震の断層幅13kmに即して引き直されていない点で合理性がなく、②アスペリティの応力降下量につき、壇ほか(2011)で求められている値が過去の国内の内陸地殻内地震で算出された複数のアスペリティの応力降下量に比べて明らかに小さい点で合理性がない旨をいう点については、次のようにいうことができる。

a そもそも、壇ほか(2011)は、Irie et al. (2010)が得た平均動的応力降下量、震源断層面積及び地震モーメントとの関係式をもとに、横ずれ断層による内陸地震の平均動的応力降下量3.4 MPa、アスペリティの応力降下量12.2 MPaを算出し、もって、活断層長さ、地震発生層の深さの条件を与えて断層面積を設定すれば、平均動的応力降下量、アスペリティの動的応力降下量として上記各定数を使うなどすることによって、長大な横ずれ断層による内陸地震の強震動予測用の断層パラメータ算定手順を提案する内容のものであることが認められる(甲D106)。

そうであれば、塩ほか(2011)の趣旨は、少なくとも平均応力降下量とアスペリティの応力降下量に関する限り、これらを既定値として与えることを提唱したという点にあるものというべきであって(乙180)、塩ほか(2011)が提唱する上記各既定値は、個々の断層モデルの設定に当たり、当該断層の断層幅や断層長さに応じた引き直しをすることをそもそも予定されていない数値といわねばならない。

b また, 壇ほか(2011)が検討に用いた国内外の合計22の地震の中には, 平均応力降下量やアスペリティの応力降下量が壇ほか(2011)が提唱する平均応力降下量3.4 MPaやアスペリティの応力降下量12.2 MPaを上回るものが複数あること(甲D106, D132, D322), 上記地震以外にも, 国内の地震のうちにはアスペリティの応力降下量が12.2 MPaを上回るものの存在が指摘されていること(甲D133, D134, 乙256)が窺える。

しかし、壇ほか(2011)が、あくまでも、長大の横ずれ断層における 強震動予測に供される断層パラメータを算定することを可能にするた めに平均応力降下量及びアスペリティの応力降下量を先験的に定める ことを目的としていることは上記 a で説示したとおりであるから、そ うだとすると、これらの数値は平均値であるものというべく、実際の 地震の中にその数値を下回るものや上回るものが存在するのは、むし ろ当然であるといわなければならないから、上記指摘に係るデータが 存在するからといって、壇ほか(2011)が提唱する平均応力降下量やア スペリティの応力降下量の値が過小に定められているということには ならない。

c さらに、壇ほか(2011)が検討に用いた地震のうち、国内の地震のデータのみを抽出し、平均動的応力降下量とアスペリティの動的応力降下量の各相乗平均を求めたところ、壇ほか(2011)のそれを上回る数値が得られた旨指摘する見解もあるけれども(甲D327)、当該見解も、上記のとおり数値を算出してみせる一方で、日本の地震データでは濃尾地震が最大であり、長大断層の規模のデータがやや不足しているため、日本以外の地震を含めた動的応力降下量及びアスペリティの動的応力降下量、すなわち、壇ほか(2011)と同じ数値を用いて断層パラメータの算定に用いる旨結論していることが認められ(甲D32

7) , 日本国内の地震データのみを基に算出された動的応力降下量と アスペリティの動的応力降下量を何らの留保なく実用に充てることを 躊躇していることが明らかである。そうであれば、上記見解があるか らといって、壇ほか(2011)の値を使うことが過小評価につながるもの と決めつけるには至らない。

実際, 壇ほか(2011)は, 壇ほか(2012)等によって, 国外の地震であるとはいえ実際の観測記録でその信頼性が検証されているのは事実であるし, 具体的に壇ほか(2011)が過小評価である旨明快に指摘する知見も見当たらない。むしろ, 壇ほか(2011)の平均応力降下量3.4MPa及びアスペリティの応力降下量12.2MPaは, 改訂レシピにおいて断層幅及び平均すべり量とが飽和する断層の地震を対象に暫定的に与えることとされているFujii and Matsu'ura(2000)の平均応力降下量3.1MPa及びそれを基にした場合に求まるアスペリティの応力降下量約14.4MPaと近似する数値であることが認められる(乙173)。

d もとより、債務者は、原子力規制委員会から、15kmの断層幅を想定している壇ほか(2011)が異なる断層幅に対しても適用できるのか説明を求められたことを受け、「伊方発電所地震動評価 震源を特定して策定する地震動(中央構造線断層帯地震動評価)と基準地震動の策定添付資料」を作成しているところ(乙179)、それによれば、断層長さごとの各基本モデルは、断層幅15kmを仮定した壇ほか(2011)の回帰曲線の付近にあって平均的といえること、北傾斜モデルのうち480kmと130kmの各ケースでやや大きめではあるが、データのばらつきの範囲内にあることから、地震モーメントの設定値は適切なレベルにあり、壇ほか(2011)の関係式の適用は可能と判断するなどとして、断層幅約13kmの中央構造線断層帯に壇ほか(2011)を適用

しても問題ないことを債務者が検証・確認していることが認められ、原子力規制委員会も、その旨審査で確認したというのである(乙180)。

- e 確かに、最近、新潟県中越沖地震における応力降下量のデータを踏まえ、これを単なる不確かさの考慮要素の一つとしてではなく、断層モデルの設定において上記応力降下量25MPaを一律に採用することが提案されていること(甲D566)、又はそのようにしない場合に、元になる断層パラメータの数値が小さければ不確かさの要素として考慮したのでは足りないのではないかとの懸念が表明されていること(甲D567の1)、以上の事実が認められるけれども、その提案や懸念が断層モデルを用いた手法による地震動評価の手法として一般的なコンセンサスを得ているとまで認めるに足りる資料は一件記録中には見当たらない。
- f してみると、債務者が壇ほか(2011)の応力降下量3.4 MPa及びアスペリティの応力降下量12.2 MPaを用いたことが合理性を欠くとまではいえない。この点に関する債権者らの主張は、採用することができない。
- (ウ) 債務者が480kmケース及び130kmケースに入倉・三宅(2001)を適用しなかったことについて

債権者らは、上記第3の3(1)債権者らの主張欄イ(ア) c のとおり主張する。そして、レシピ上、入倉・三宅(2001)の適用範囲は、7.5×10 18 N・m \leq 地震モーメントMo \leq 1.0×10 21 N・m(適用上限)とされているところ(乙38)、480kmケースの鉛直モデルにおける震源断層面積は6124kmであって(乙11、31)、この震源断層面積の値は、入倉・三宅(2001)の適用上限となる地震モーメントに対応する震源断層面積4240km (Mo=1.0×10 21 N・mを入倉・三宅

(2001)により換算した数値)を上回るのに、壇ほか(2011)によった場合の地震モーメントは5. 30×10^{20} N・mであって(乙11、31)、地震モーメントの値を見る限り、入倉・三宅(2001)の適用範囲内ということになる。また、長大な断層の最大の地震規模を推定する方法として入倉・三宅(2001)の適用を指摘する知見も存在する(甲D124)。

しかし、レシピは、上記知見(甲D124)が著された後に改訂レ シピに改められたところ,改訂レシピにおいては,入倉・三宅(2001)の 適用範囲は、地震モーメント $Mo \le 1$. $8 \times 10^{20} N \cdot m$ とされ、地震 モーメントがそれを上回るときは、Murotani et al. (2015) を適用す ることとされているから (Z173), それによれば、480kmケース 鉛直モデルは、震源断層面積(地震モーメントを入倉・三宅(2001)によ り換算した数値)の点においても、また、壇ほか(2011)を適用した場合 の地震モーメントの点においても、入倉・三宅(2001)の適用範囲外とな る。このように、480kmケースが入倉・三宅(2001)の適用になじまな いことは、同ケースが断層幅もすべり量も飽和しているとの知見を踏ま えたものであるところ、改訂レシピが断層幅と平均すべり量の両方が飽 和している場合は入倉・三宅(2001)ではなく、Murotani et al.(2015) の適用を推奨していることにも沿うものである。その上、改訂レシピに よれば、地震モーメントMo=5. $30 \times 10^{20} N$ ・mに適用されるべ きスケーリング則は Murotani et al. (2015)となるところ,同スケーリ ング則は、壇ほか(2011)とも整合的であるというのである(乙31)。

してみると、債務者が480kmケースのスケーリング則として入倉・ 三宅(2001)を適用しなかったのは、最新の知見に基づく改訂レシピの内 容に沿うものというべく、結果として合理性があるといわねばならない。 この点に関する債権者らの主張は、採用することができない。

また、債権者らは、債務者が130kmケースのスケーリング則として

入倉・三宅(2001)を適用しなかった点についても合理性を欠くかのような主張もするけれども、同ケースについて債務者が基本として採用した壇ほか(2011)によって求まる地震モーメントと入倉・三宅(2001)によって求まるそれとは極めて整合的であることが認められるから(乙31)、債務者が130kmケースについて入倉・三宅(2001)を適用しなかったからといって、そのことが合理性を欠くとはいえない。この点に関する債権者らの主張も採用することができない。

- (エ) 5 4 kmケースでの入倉・三宅(2001)による過小評価の可能性について 債務者は、断層モデルを用いる手法による地震動評価に当たり、5 4 kmケースについて、スケーリング則として、4 8 0 kmケース及び1 3 0 kmケースと同様に壇ほか(2011)を適用することを基本としつつ、あらか じめ基本震源モデル(鉛直モデル)に織り込む不確かさとして入倉・三 宅(2001)を適用することにしたこと(乙11,31),入倉・三宅 (2001)は震源断層面積を用いて地震モーメントを推定する経験式である こと(乙173),上記モデルに入倉・三宅(2001)を適用した結果、地 震モーメントは2.74×10¹⁹N・m(Mw6.9)となり、レシピ 及び改訂レシピによる限り、いずれも入倉・三宅(2001)の適用が可能な 範囲に収まっていること(乙11,31),以上の事実が認められる。
 - 一方、債権者らは、上記第3の3(1)債権者らの主張欄イ(ア)dのとおり 主張する。そして鉛直モデルにつき、スケーリング則として入倉・三宅 (2001)を適用することをめぐり、以下の事実が一応認められる。
 - a 島﨑元委員長代理は、平成26年9月に原子力規制委員会委員を退任した。
 - b 上記 a の後, 島崎元委員長代理は, 厚さ 1 4kmの地震発生層中の垂直な断層を仮定した場合, 入倉・三宅(2001)を変形して得られる式の係数が, 武村式(1998)や山中・島崎(1990)が示す式(以下「山中・島

崎式」という。)の係数の4分の1程度となり、同じ断層長さで比較すると、入倉・三宅(2001)は武村式(1998)等の4分の1程度の地震モーメントしか導かないことから、入倉・三宅(2001)を高角度の断層で用いると地震モーメントが過小評価される傾向があり、大地震の地震モーメントの推定には入倉・三宅(2001)を用いるべきではないなどと指摘するようになり、それが新聞に報道される事態ともなった(甲D105、D311、312、314、315、318)。

c これを受け、原子力規制委員会の田中委員長及び石渡明委員は、平成28年6月16日、島崎元委員長代理と面会した。その席上、島崎元委員長代理は、入倉・三宅(2001)を武村式(1998)や山中・島崎式と比較した場合の上記問題点を指摘するとともに、2016年熊本地震(以下「熊本地震」という。)に係る国土地理院の暫定的な解で計算した断層面積を入倉・三宅(2001)に代入すると、地震モーメントと断層のずれの量が、実際の値に比べ非常に小さくなるとして、入倉・三宅(2001)を使う限り、震源の大きさは過小評価される旨述べた。その上で、島崎元委員長代理は、大飯発電所における地震動評価の対象となっている断層が鉛直モデルであるところ、入倉・三宅(2001)が適用されているとして、入倉・三宅(2001)とは別の式による再計算の必要性を指摘した(甲D319,320)。

そして,原子力規制委員会は,同月20日に開かれた平成28年度 第16回会議において,上記面会結果を踏まえ,大飯発電所の地震動 評価について再計算を行うこととした(甲D320)。

d 入倉・三宅(2001)を提唱した入倉名誉教授は、平成28年6月16日付毎日新聞に掲載されたインタビューの中で、「(入倉・三宅(2001)は)地震規模の算定に有効だと科学的に確認されている。ただ、地震の揺れの予測に使う場合には、断層面が垂直に近いと地震規模が

小さくなる可能性はある。」などと述べた(甲D418)。

- e 纐纈教授は、震源断層の幅は活断層調査で得ることは難しく、「大地震の震源断層は小地震による地震発生層内に収まる」という仮定に基づいて決められる旨、熊本地震付近の地震発生層は下限15㎞程度とされているが、実際の震源断層の下端は約16㎞であった旨、したがって、震源断層の幅を地震発生層の下限で打ち切ると面積は過小評価されてしまう旨を指摘する(甲D562)。そうしたところ、長期評価では地震発生層下限深さが微少地震の震源分布から評価されているが、大地震時に断層下端がそれよりも深くなる可能性はあるものの、それがどこまで深くなるかという知見が今までにほとんど得られていないとの指摘もある(甲D564)。
- f もっとも、平成7年以降に発生した国内の内陸地殻内地震($Mw5.4\sim6.9$)のデータを用いて震源パラメータに係る既往のスケーリング則の再評価を行ったところ、断層破壊面積と地震モーメントの関係は、Mw6.5以上の場合に入倉・三宅(2001)とよく一致することが確認されている(Z256)。また、熊本地震を経た後も、入倉・三宅(2001)がスケーリング則として誤っているとまで指摘する見解は見当たらないし(甲D320)、纐纈教授も入倉・三宅(2001)が熊本地震の値をほぼ再現でき、回帰式として誤りがないことを認めている(甲D562)。

以上の事実が一応認められる。

上記認定事実によれば、入倉・三宅(2001)は、Mw6.5以上の規模の地震につき、実測されたデータを当てはめるとよく一致し、これを誤りであると喝破する見解も見当たらないというのであるから、震源断層面積と地震モーメントとの関係を表す経験式としては今なお一定の信頼を置くことができるものといってよい。現に、地震本部は、改訂レシピ

においても、過去の地震記録などに基づき震源断層を推定する場合や詳 細な調査結果に基づき震源断層を推定する場合には所定の規模の地震モ ーメントを算出する手法として入倉・三宅(2001)を用いる旨を謳ってい る(乙173)。しかるに、入倉・三宅(2001)、武村式(1998)及び山 中・島﨑式を、地震発生層及び断層長さが同じで断層角を90度とした 場合の地震モーメントを比較する式に変形すると、入倉・三宅(2001)の 係数は、後二者のそれよりも4分の1程度小さくなるというのである。 そのことは、要するに、震源断層面積として同じ値を与える限り、入倉 ・三宅(2001)は常に後二者よりも地震モーメントとして小さい値を返す ということにほかならず,入倉名誉教授のコメント(上記 d)も,上記 の点を承認する趣旨のものと解することができる。そうであれば、54 kmケースのように、中央構造線の長期評価の上では地表の活断層長さが 明確に見当たらない(乙33)場合であって,したがって,過去の地震 記録等又は詳細な調査結果に基づき震源断層を推定するほかない場合に 地震規模を推測するに当たっては、そもそも改訂レシピによらず入倉・ 三宅(2001)を適用しないこととするか,又は改訂レシピに沿って入倉・ 三宅(2001)を適用するけれども、震源断層面積、なかんずく一定の断層 長さを想定する場合には断層幅を保守的に設定し、もって、入倉・三宅 (2001)が内包する上記問題点が地震動評価に現れないように工夫するよ りほかないものというべきである。

これを,債務者が54kmケースにおいて入倉・三宅(2001)を適用した ことの合理性について検討すると,次のようにいうことができる。

(a) 債務者は、地震発生層上端深さについて、①気象庁一元化震源をもとにした本件敷地を中心に半径約100kmの範囲内において50km以 浅で発生した内陸地殻内地震の震源深さ(2~12km)、②本件敷地 周辺及びその近傍において平成9年10月から平成23年12月まで の間に発生した深さ25km以浅の地震を対象とするD10%の評価(5~6km),③深部ボーリングにおけるPS検層(ダウンホール法)によって求めた地盤のP波速度Vp,本件敷地周辺における屈折法地震探査結果によって本件敷地及びその前面海域の地下1.5~2kmを下端として広がる三波川変成岩類について求めたP波速度(Vp=6km/秒となる層上面は得られなかったこと)及び中央構造線断層帯周辺(ただし,四国東部)のVp=6km/秒相当層の深さに関する知見(5km程度),④本件敷地付近における中央構造線断層帯を三波川変成岩類と領家花こう岩類の会合部と捉えた場合における上記屈折法地震探査結果に基づくその上端深さ(2km程度),以上の諸点を比較検討し,内陸地殼内地震の地震動評価で用いる地震発生層上端深さを2kmと設定したことが認められる(乙11)。

また、債務者は、地震発生層下限深さについて、①上記気象庁一元 化震源をもとにした検証、②地震波トモグラフィ解析の結果得られた、地震発生層の下限深さとなる高温領域の存在を示唆する高Vp/Vs 比領域 (VsはS波速度)の上端(すなわち、低Vp/Vs比領域の下限)深さ(15km)、③本件敷地周辺のキュリー点深度(岩石が磁性を失う温度に達する深度)に関する知見(約11km)及び断層面下端深度とキュリー点深度との相関関係に関する知見による仮説(16.5km)、④本件敷地周辺におけるキュリー点深度との比から算出した地殻熱流量や深部ボーリングの掘削で得られたデータを用いて算出された地殻熱流量や深部ボーリングの掘削で得られたデータを用いて算出された地殻熱流量の値を基に推定されるD90%の深度(15km程度)、⑤中央構造線の長期評価が示す中央構造線断層帯の地震発生層の下限深さ(概ね15km)、以上の諸点を比較検討し、内陸地殻内地震の地震動評価で用いる地震発生層下限深さを15kmと設定したことが認められる(乙11)。

してみると、債務者は、地震発生層の上端及び下端のいずれについても、複数の観点から実測値、知見に基づく仮説を総合して設定したものといってよいし、その設定結果も保守的であるといって差し支えないから、債務者が設定した地震発生層の厚さ、すなわち、鉛直モデルにおける15km-2km=13kmという断層幅の設定も、一応合理的であるといえる。そして、原子力規制委員会は、大飯発電所の地震動評価に対する審査に当たり、入倉・三宅(2001)が他の関係式に比べて同じ断層長さに対する地震モーメントを小さく算出する可能性を有していることにも留意して、断層の長さや幅等に係る保守性の考慮が適切になされているかという観点で確認していたことが一応認められるところ(甲D411、D412、乙254)、本件申請に対する審査についても、同様の姿勢で臨んでいたものと推認することができる。

- (b) また、債務者は、5 4 kmケースの鉛直モデルについて、基本的に壇ほか(2011)をスケーリング則として採用し、入倉・三宅(2001)をあくまでも不確かさとして基本震源モデルに織り込む位置付けでのみ適用している上(乙11、31)、基本として用いた壇ほか(2011)によって上記モデルの地震モーメントを5.8 4×10¹⁹ N・m(Mw7.1)と推定しているところ、このようにして求められた地震モーメントは、入倉・三宅(2001)で求まる地震モーメント2.7 4×10¹⁹ N・mの2倍を上回っており、実際、債務者は、壇ほか(2011)によって求まった地震モーメントを使って地震動評価を行っている。しかも、壇ほか(2011)によって求まった地震モーメントに対応するモーメントマグニチュードの値は、応答スペクトルに基づく地震動評価におけるMw7.2に概ね整合する。
- (c) また、5.4 kmケース鉛直モデルに入倉・三宅(2001)を適用し、アスペリティ応力降下量を1. 5.6 にたケース ($Mo=2.74 \times 1.0^{19}$

N・m(Mw 6.9))の地震動評価の最大加速度は、NS:458、EW:371、UD:178であるのに対して、54kmケース鉛直モデルに壇ほか(2011)を適用し、アスペリティ応力降下量を20MPaとしたケースと同等の地震動評価となるとしている480kmケースの鉛直モデルに壇ほか(2011)を適用し、アスペリティ応力降下量を20MPaとしたケースの地震動評価の最大加速度は、NS:456、EW:478、UD:195であったことが認められる(乙11)。しかも、壇ほか(2011)を適用するに当たって債務者がした応力降下量の設定が不合理であるとまではいえないことは上記説示のとおりであり、ほかに一件記録を精査しても、壇ほか(2011)にスケーリング則として過小評価をもたらすことを窺わせる資料も見当たらない。そうであれば、入倉・三宅(2001)によると地震モーメントこそ壇ほか(2011)よりも小さいけれども、最終的な地震動評価としては保守性が確保されていると考える余地がある。

- (d) 加えて、入倉・三宅(2001)の上記問題点は、その内容に照らすと、武村式(1998)及び山中・島﨑式と係数を比較すれば容易に明らかになる類のことがらであり、そのことは、債務者が平成25年7月8日に本件申請をした際も同様であったはずである。また、島﨑元委員長代理は、本件申請の当時から平成26年9月に退任するまで原子力規制委員会委員の立場にあったのであるから、債務者が54kmケースへ入倉・三宅(2001)を適用していることをその在任中に認識できなかったとは考え難い。それなのに、一件記録を精査しても、島﨑元委員長代理において、上記退任に至るまで、債務者による54kmケースへの入倉・三宅(2001)の適用が地震動評価を過小ならしめる旨問題提起した事実を認めるに足りる資料は全くない。
- (e) してみると,入倉・三宅(2001)そのものには上記のとおりの問題点

が指摘できることを考慮したとしても、債務者が54kmケースの鉛直 モデルについて入倉・三宅(2001)を適用したことが合理性を欠くもの とはいい難い。

もちろん、この点について確信を得ようとするならば、島崎元委員 長代理が原子力規制委員会委員を退任した後になって入倉・三宅 (2001)の問題点を指摘して、これを用いてきた地震動評価の再計算を 促すことにした動機や経緯、島﨑元委員長代理の指摘を受け、地震本 部が過去の地震記録等や詳細な調査結果に基づき震源断層を推定する 場合における地震モーメントの算出手法として入倉・三宅(2001)を挙 げている改訂レシピの再改訂作業を行っていることの有無やその進捗 状況、仮に再改訂に至っていない場合はその背景となる事情、島崎元 委員長代理の指摘を受けた後、本件申請に対する審査における原子力 規制委員会での議論の内容や判断に至る機序等をめぐり,島﨑元委員 長代理はもとより、地震本部において改訂レシピの再改訂作業に携わ る地震学者や担当者, 本件申請の審査に当たった原子力規制委員会の 他の委員や担当者等に対する証人尋問による慎重な吟味を待つほかな い。しかし、それは、本件のような保全手続にはそもそもなじまない。 いずれにしても、この点に関する債権者らの主張は、採用すること ができない。

(オ) スケーリング則のばらつきについて

債権者らは、上記第3の3(1)債権者らの主張欄イ(イ)aのとおり主張する。

しかし、断層モデルを用いた手法による地震動評価において地震規模を算出するスケーリング則として債務者が採用した壇ほか(2011)、Fujii and Matsu'ura (2000)、入倉・三宅(2001)は、いずれも国内外で発生した現実の地震において観測された記録から得られた経験式であ

ることが認められるところ(乙31,37),地震動評価の過程でこれらの経験式を用いて地震規模を推測しようとする場合に、当該経験式そのものが内包する不確かさをそのまま考慮しないからといって、直ちにそのような地震動評価が合理性を欠くとまでいえないことは、松田式や武村式(1990)と何ら異ならない。債権者らの上記主張は、上記ア(イ)の説示に照らし、採用することができない。

(カ) グリーン関数法の適用について

債権者らは、上記第3の3(1)債権者らの主張欄イ(イ)bのとおり主張する。そして、債務者が経験的グリーン関数法による評価に当たり要素地震としたのは芸予地震の余震である安芸灘の地震(M5.2)であるところ、同地震は海洋プレート内地震であったことが認められる(審尋の全趣旨)。

しかし、債務者は、要素地震とした上記地震が、敷地前面海域の断層群から外れた場所を震源としていることから距離補正を、上記地震が海洋プレート内地震であったことから、内陸地殻内の媒質(地震モーメント、応力降下量等)への補正を、それぞれ行った上で経験的グリーン関数法を適用していること、グリーン関数法による評価を行うに先立って、経験的グリーン関数法と統計的グリーン関数法とによる評価をそれぞれ実施して両者の比較を行った結果、原子炉容器、蒸気発生器等の主要な設備の固有周期と重なる周期0.1秒付近以下に着目すると経験的グリーン関数法による評価の方が厳しい評価となったため、経験的グリーン関数法を評価に用いるとしたこと、以上の事実が認められる(乙11、31)。しかも、債権者らが指摘する南北方向の周期0.3秒以上については、基準地震動Ss-1によってカバーされていることが認められる(審尋の全趣旨)。

そうであれば、債務者がグリーン関数法を用いて行った地震動評価は、

重要施設の耐震安全性を確保するという観点からは必ずしも不合理であるとはいえない。この点に関する債権者らの主張は、採用することができない。

(キ) 不確かさの考慮の十分性について

債権者らは、上記第3の3(1)債権者らの主張欄イ(イ) c のとおり主張する。そして、債務者は、断層モデルを用いた手法による地震動評価において考慮した不確かさのうち、①応力降下量(短周期レベル)を1.5 倍又は20 MPaとする点、②北傾斜モデル、③南傾斜モデル、④破壊伝播速度を1.0 V s とすること、⑤アスペリティ平面位置を敷地正面のジョグに配置すること、以上5点については、基本震源モデルに織り込まず、また、相互に重畳させることなく考慮していることが認められる(乙11)。

ところで、設置許可基準規則解釈別記2は、「基準地震動の策定過程に伴う各種の不確かさ(震源断層の長さ、地震発生層の上端深さ・下端深さ、断層傾斜角、アスペリティの位置・大きさ、応力降下量、破壊開始点等の不確かさ、並びにそれらに係る考え方及び解釈の違いによる不確かさ)については、敷地における地震動評価に大きな影響を与えると考えられる支配的なパラメータについて分析した上で、必要に応じて不確かさを組み合わせるなど適切な手法を用いて考慮すること」としている。そして、債務者は、上記5点以外の不確かさ、すなわち、⑥地震発生層の上端深さ・下端深さについては、いずれも複数の観点からする計測結果や知見を組み合わせた上、そもそも保守的に考慮した数値をあらゆる震源モデルについて共通で使うことによって、⑦震源断層長さ、アスペリティ深さ、破壊開始点、スケーリング則については、基本震源モデルに織り込むことによって、⑧地震動評価手法については経験的グリーン関数法に加えて統計的グリーン関数法も用いて両者の結果を比較す

ることによって、結果として重畳的に考慮されていることが認められる (乙11,31)。設置許可基準規則解釈別記2の要請や、債務者が実際に上記⑥ないし⑧で見たような各不確かさの考慮のありように照らすと、上記①ないし⑤の不確かさも、これらを全て重畳させて考慮するのが自然であるように考えられないではない。

しかし、当該敷地における地震動の大きさは、震源特性、伝播特性、増幅(サイト)特性の3つの特性によって左右されることが知られており(乙269、審尋の全趣旨)、地震ガイドは、「地震動評価においては、震源特性(震源モデル)、伝播特性(地殻・上部マントル構造)、サイト特性(深部・浅部地下構造)における各種の不確かさが含まれるため、これらの不確実さ要因を偶然的不確実さと認識論的不確実さに分類して、分析が適切になされていることを確認することを求めている。そうであれば、地震動評価に際しては、不確かさを単純に重畳させるのではなく、不確かさの要因を分類、分析して、これを適宜組み合わせ、もって、不確かさの項目ごとに地震動評価に与える影響を明らかにすることがそもそも求められているものと解するのが相当である。

そこで、上記①ないし⑤の各不確かさについて、その要因を分類し、 それぞれが地震動評価に与える影響の大きさを検討すると、次のように いうことができる。

a 応力降下量(短周期レベル)について

一件記録によれば、地震ガイドには、「アスペリティの応力降下量(短周期レベル)については、新潟県中越沖地震を踏まえて設定されていることを確認する」ことが求められていること(乙39)、新潟県中越沖地震にあっては、観測された地震動を再現する震源断層モデルを仮定し、震源における地震動モデルを推定し、経験的に得られている地震規模と地震動の大きさの関係を比較したところ、震源におい

て通常の1.5倍程度強い揺れを生じる地震であることが認められた 旨の知見が得られていること(乙25),以上の事実が認められる。 そうすると、標記の不確かさは、地震ガイドの求め及び新潟県中越沖 地震において得られた知見に基づくものといってよい。

そして、上記知見の内容からすると、新潟県中越沖地震において1.5倍程度に及ぶ揺れの増幅をもたらしたのは震源の影響とみるのが自然であるから、上記不確かさは震源特性に分類すべき筋合いである。しかるに、新潟県中越沖地震の震源断層は逆断層型であったことが分かっているが(乙25)、そのような断層の構造は、各種調査や知見を総合した結果、敷地前面海域の断層群を含む中央構造線断層帯が右横ずれ断層型であると認められることと明らかに異なる。しかも、横ずれ断層型の内陸地殻内地震における短周期レベルの大きさは、逆断層型の内陸地殻内地震のそれよりも有意に小さいことが指摘されていることが認められる(乙260)。

そうであれば、敷地前面海域の断層群を含む中央構造線断層帯が、 新潟県中越沖地震の震源と同じような震源特性を有し、実際に新潟県 中越沖地震に匹敵する短周期レベルの揺れを生じる可能性は自ずと小 さいものと考えることには一応の合理性があるということができる。

b 北傾斜モデルについて

敷地前面海域の断層群を含む中央構造線断層帯は、横ずれ断層を主体としていることが認められるところ(乙33)。そのような場合、変動地形学的な観点、地震学的な観点、実際に発生した地震の解析結果によれば、震源断層面はほぼ鉛直であると考えるのが一般的であるとされていることが一応認められる(乙11)。そのことは、中央構造線の長期評価において、「石鎚山脈北縁一愛媛北西部」につき「高角度」と、「伊予灘」につき「高角度」と指摘されているこ

ととも整合する(乙33)。

もっとも、債務者は、中央構造線断層帯の特徴として断層面が30 度ないし40度北傾斜している可能性を示唆する複数の知見や、実際 に敷地前面海域の地質境界断層としての中央構造線の断層面が北に傾 斜している可能性を示すデータ等が存在することに基づき、北傾斜モ デルを不確かさとして考慮することにしたものと認められる(乙11、 31)。

そうであれば、債務者において、横ずれ断層における断層角に見られる基本的な性質や実際に行った各種調査に基づくアトリビュート解析に基づいて、中央構造線断層帯の断層傾斜角を鉛直とするのを基本とし、これが北傾斜となっている可能性を相応に小さく見たことには一応の合理性があるというべきである。

c 南傾斜モデルについて

上記 b で説示したところに加え、応答スペクトルによる地震動評価に当たり、南傾斜モデルを不確かさの一つとして考慮しなかったことに一応の合理性が認められることは、上記ア(力) b で説示したとおりであるから、これらの事情に照らすと、債務者において、敷地前面海域の断層群を含む中央構造線断層帯の震源断層が南に傾斜している可能性が有意に小さいと考えたことには一応の合理性があるということができる。

d 破壊伝播速度について

レシピも改訂レシピも、原則として、地震動を評価する際の平均破壊伝播速度Vrについては、これをS波速度Vsとの関係式であるVr=0.72Vsで推定することとしている(Z173)。もっとも、改訂レシピ中には、近年の研究においては、上記係数V0.72V10 も大き目の値が得られていることが示唆されているところ(V173)、

債務者は、長大断層における破壊伝播速度に関する複数の知見を踏まえ、改訂レシピ中に示された係数 0.72を基本に据えつつ、断層長さに応じた不確かさとして上記係数 0.72よりも大きい係数を考慮したものと認めるのが相当である(乙31)。

そうであれば、債務者において、破壊伝播速度が実際に0.72Vsを超える可能性を相対的に小さく見積もることには相応の合理性があるものといって差し支えない。

e アスペリティ平面位置について

債務者が行った文献調査、音響測深、海上音波探査(反射法音波探査)、屈折法地震探査等の結果によると、敷地前面海域の断層群中、本件敷地のほぼ正面に当たる部分に、重信引張性ジョグ、串沖引張性ジョグ、三崎沖引張性ジョグとは別に、これらに準じる構造を持つジョグ(以下「伊方沖引張性ジョグ」という。)の存在が認められる(乙11)。ジョグは、通常、変位量が低減する区域であるとされていることもあって(乙31)、この部分にアスペリティが存在することは想定し難い旨も指摘されている(乙11)。そこで、債務者は、断層モデルを用いた手法による地震動評価に当たり、上記各種調査結果から得られたジョグの位置データに基づき、本件敷地の正面にはアスペリティを配置しないことを基本としつつ、伊方沖引張性ジョグにもアスペリティが存在する可能性を考慮して、アスペリティ平面位置を本件敷地前面に配置することとしたものと認められる(乙11、31)。

そうであれば、各種調査によって認められた伊方沖引張性ジョグの 存在及びこれと本件敷地との位置関係並びにジョグにアスペリティが 存在する可能性をめぐる知見に照らすと、本件敷地正面にアスペリティが存在する可能性が有意に小さいものと考えることには一応の合理 性があるというべきである。

- f 上記 a ないしe で検討したところによれば、上記①ないし⑤の各不確かさは、実際に債務者が行った調査や基にした知見に照らし、各々、その不確かさの程度において相応に小さいものにとどまり、したがって、これら 5 点の不確かさの数点又は全部が重畳することによって本件敷地をめぐる断層モデルを用いる手法による地震動評価に影響を与える可能性もまた小さいものと考えることができる。そうであれば、債務者が上記①ないし⑤の各不確かさを基本震源モデルに織り込まなかったからといって、直ちに合理性を欠くとまではいえない。この点に関する債権者らの主張は、採用することができない。
- (3) 敷地ごとに震源を特定して策定する地震動(プレート間地震)の想定の相当性について
 - ア 南海トラフから琉球海溝までの連動を想定する必要性について

債権者らは、上記第3の3(2)債権者らの主張欄アのとおり主張する。そして、南海トラフから琉球海溝までが連動するプレート間地震の発生可能性を示唆したり、債務者が検討用地震として選定した内閣府検討会が提唱した南海トラフの巨大地震(陸側ケース)(M9.0)は考え得る最大の地震とはいえない旨指摘する見解がみられる(甲D142、D147、D148、D151、D152)。また、津波ガイドには、「プレート間地震に起因する津波の波源設定の対象領域の例示」の下に、プレート間地震に起因する津波波源の設定は、3つの領域が対象となる旨指摘した上、その3つの領域の一つとして、「南海トラフから南西諸島海溝沿いの領域(最大Mw9.6程度)」が挙がっていることが認められる(乙156)。しかし、債務者が南海トラフの巨大地震を検討用地震として選定したの

しかし、債務者が開海トラフの巨人地震を検討用地震として選定したのは、その候補となる地震のそれぞれについて応答スペクトルの方法による 地震動評価を比較検討した結果であって(前提事実)、その過程に不合理

な点は見当たらない。また、津波ガイドの上記指摘は、あくまでも津波波 源の設定対象となる領域及び当該領域を津波波源とした場合に想定される 地震規模の参考値を例示したものに過ぎず、その指摘をもって直ちに強震 断層モデルの断層パラメータを設定しなければならないとは限らない(乙 156)。さらに、南海トラフの巨大地震(陸側ケース)で想定されてい る震源断層と、南海トラフから琉球海溝までが連動した場合の震源断層を 比較すると、後者の範囲は前者の範囲を本件敷地からさらに離隔する方向 へ延長したものであることが明白であり(乙259,審尋の全趣旨),そ うであれば、震源断層の範囲が離隔することによって本件敷地に影響する 地震動の大きさは減衰するものと見込まれるというのが素直な理解である。 なるほど、琉球海溝までの連動を前提とし、したがって、上記連動に係る 分だけ本件敷地と離隔することにより, 地震動が本件敷地に到達するまで に具体的にどの程度地震動が減衰するか、その数値を一件記録から一義的 に見いだすことはできないが、さればといって、上記の見込みが相応の合 理性を有することまで否定し去ることはできない。しかも、内閣府検討会 の提唱した南海トラフの巨大地震は、東京大学名誉教授・阿部勝征を座長 とし、高知大学大学院総合人間自然科学研究科教授・岡村眞、独立行政法 人産業技術総合研究所活断層・地震研究センター長・岡村行信、島﨑元委 員長代理ら専門家において構成される内閣府検討会において、次に発生す る可能性の高い強震断層モデルを検討したものではなく、南海トラフで発 生し得る巨大地震の強震断層モデルを構築した結果であって、巨大地震の 中でも最大級のものであることが確認されたことが認められるから(乙2 59, 272), 上記提唱に係る地震が、その標榜するところに反し、想 定すべき最大クラスの地震とは到底いえないモデルであったと考える余地 もないといわねばならない。

してみると, 債務者が検討用地震として内閣府検討会の提唱する南海ト

ラフの巨大地震(陸側ケース)を選定したことが合理性を欠くものとはい えない。この点に関する債権者らの主張は、採用することができない。

イ 応答スペクトルに基づく地震動評価について

(ア) 地震規模をMw8.3と設定したことの合理性について 債権者らは、上記第3の3(2)債権者らの主張欄イ(ア)のとおり主張し、 これに沿う見解(甲D334)の存在を指摘する。

しかし、上記見解は、高レベル放射性廃棄物の地層処分施設のように、地下深部に建設される施設の耐震性を検討する際に地震動をどのように設定するかという課題に応えるべく、距離減衰式を用いた地中地震動の直接評価の適用可能性を検討するために、耐専式に対する地下深部での補正係数を算定した上で、これを用いて東北地方太平洋沖地震の応答スペクトルの再現を試みた成果を報告するものであるから(甲D143)、例えば本件原子炉のように、地表に建設される施設の耐震性を検討する際の基準地震動の設定とは直接には関係しない課題に対する解を示すものというほかはない。したがって、少なくとも、上記見解を本件に当てはめることが直ちに相当であるとまではいえない。

そして、内閣府検討会は、上記アで指摘した専門家らで構成され、各種検討の結果、平成23年12月27日付で「中間とりまとめ」(乙272)を、平成24年3月31日付で「南海トラフの巨大地震による震度分布・津波高について(第一次報告)」(甲D143)を、それぞれ公表した末、同年8月29日付で「南海トラフの巨大地震モデル検討会(第二次報告)強震断層モデル編ー強震断層モデルと震度分布について一」(以下「第二次報告書」という。乙259)の取りまとめを遂げたこと、南海トラフの巨大地震(陸側ケース)は、第二次報告書において提唱されている強震断層モデルのうち、強震動生成域を可能性がある範囲で最も陸域側の場所に設定したケースであること(乙259)が、そ

れぞれ認められる。そうであれば、債務者が検討用地震として選定した 地震は、内閣府検討会において、数次にわたって経過を報告しつつ検討 を重ねた末に到達した成果物であるといってよい。

そうであるところ、内閣府検討会は、第二次報告書において、経験的 手法のパラメータであるモーメントマグニチュードにつき、中央防災会 議(2003)における東海・東南海・南海地震を検討した際のモーメントマ グニチュード,経験的手法のパラメータであるモーメントマグニチュー ド, 震度分布の関係, 東北地方太平洋沖地震の震度分布に適用されてい る経験式のパラメータであるモーメントマグニチュードの値を参照した 上、南海トラフの巨大地震の検討における経験的手法のパラメータであ るモーメントマグニチュードについて、これをMw8.3と設定したこ と(乙259), 上記の経過を経て検討された南海トラフの巨大地震の 強震断層モデルは、巨大地震の中でも最大級のものであることが確認さ れたばかりか、設定するパラメータの幅が大きく、想定より大きな強震 断層モデルとなっている可能性も否定できないこと(乙259),以上 の事実も認められる。そうであれば、南海トラフの巨大地震についてモ ーメントマグニチュードを8.3と設定することは、内閣府検討会の度 重なる検討の結果に沿うものであるのみならず、そのようにして得られ た強震断層モデルは想定される最大規模の地震であるとみてよいことに なる。そのことは、東北地方太平洋沖地震がMw9.0の地震であるに も関わらず、経験的手法による震度分布の比較では、観測された震度分 布はMw8.2~8.3相当のものとなる理由の解明が今後の課題とし て残されているからといって(乙259)、現時点で直ちに左右される ものとはいい難い。

してみると、債務者において、応答スペクトルによるプレート間地震の地震動評価に当たり、その地震規模をMw8.3と設定したことが直

ちに合理性を欠くものとまではいえない。この点に関する債権者らの主 張は、採用することができない。

(イ) 耐専式のばらつき等について

債権者らは、上記第3の3(2)債権者らの主張欄イ(イ)のとおり主張する。 しかし、債務者は、応答スペクトルによるプレート間地震の地震動評 価に当たり、その地震規模をMw8.3と設定しているところ、耐専式 は、M8.5までの規模の地震に適用することができる距離減衰式であ るというのであるから、耐専式が地震規模の点において上記地震動評価 に不適であるということにはならない。

また、耐専式は、①解放基盤表面の地震動として評価できること、② 水平方向及び鉛直方向の地震動が評価できること、③震源の広がりを考慮できること、④敷地における地震観測記録を用いて地域特性等が考慮できる点が長所であるとされているところ、一件記録を精査しても、断層最短距離を用いて上記①ないし④の全てを考慮することができるような距離減衰式の存在は窺えないから、債務者が上記地震動評価に当たり耐専式のみを適用し、断層最短距離をパラメータとする距離減衰式を適用しなかったことが直ちに合理性を欠くとまではいえない。

さらに、耐専式のばらつきや不確かさの考慮をいう点については、結果として得られた地震動評価において、経験式が内包する不確かさを十分に考慮したものといえるのであれば、そのような地震動評価が結論において新規制基準に適合する旨判断することも不合理ではないという余地があることは上記(2)ア(イ)で説示したとおりである。そうであるところ、上記地震動評価の対象に選定された南海トラフの巨大地震については、その強震断層モデルが巨大地震の中でも最大級のものであることが内閣府検討会において確認されただけでなく、想定より大きな強震断層モデルとなっている可能性も否定できないことが認められる(乙259)。

そうであれば、南海トラフの巨大地震の強震断層モデルを対象とした地 震動評価については、これを結果として耐専式が内包する不確かさを十 分に考慮したものと考えても不合理であるとはいえない。

以上によれば、この点に関する債権者らの主張は、採用することができない。

- ウ 断層モデルを用いた手法による地震動評価について
 - (ア) ばらつき、不確かさの考慮の十分性について

債権者らは、上記第3の3(2)債権者らの主張欄ウ(ア)のとおり主張する。 しかし、債務者がプレート間地震の地震動評価のための検討用地震と して選定した南海トラフの巨大地震(陸側ケース)の強震断層モデルは、 ①平均応力降下量を4.0MPaとしているが、その値よりも大きくなる 確率は10パーセントにとどまり、この点から見る限り、南海トラフの 巨大地震における強震断層モデルは、巨大地震の中でも最大クラスの強 震断層モデルであるといえること,②すべり角については、乱数を用い て、すべり角に対し±30度のゆらぎを与え、強震波形の計算結果が極 端なものとならないよう対処されていること、③基本ケースの強震動生 成域を、可能性がある範囲で最も陸域側(プレート境界面の深い側)に 設定したものであること,④強震動生成域の応力降下量と震源断層全体 の地震モーメントとの関係からして、上記モデルが想定より大きな強震 断層モデルとなっている可能性も否定できないこと、⑤強震断層モデル については、内閣府検討会においてその適合性を評価し、想定のとおり、 巨大地震の中でも最大級のものであることを確認したこと、以上の事実 が認められる(乙259)。そうであれば、南海トラフの巨大地震(陸 側ケース)は、強震断層モデルの断層パラメータの設定において本件敷 地との関係で相当程度の不確かさが既に織り込まれているものといって よい。

しかも、債務者は、上記強震断層モデルを前提とした上、さらに、本件敷地近傍にも強震動生成域を追加配置することを不確かさとして考慮したことが認められる(乙11)。

してみると、債務者が、南海トラフの巨大地震(陸側ケース)の強震 断層モデルについて、本件敷地近傍における強震動生成域の追加配置以 外の不確かさを独立して考慮しなかったからといって、直ちに合理性を 欠くとはいえない。この点に関する債権者らの主張は、採用することが できない。

(イ) 強震動パルスの生成を意識した震源モデルが考慮されていないこと について

債権者らは、上記第3の3(2)債権者らの主張欄ウ(イ)のとおり主張する。そして、近年、野津チームリーダーらにおいて東北地方太平洋沖地震等で実際に観測されている強震動パルスを説明するためには強震動生成域内部によりコンパクトな領域を考える必要があるとして、「強震動パルス生成域(SPGA)」という概念が提唱されていること(甲D154)、その上で、野津チームリーダーは、福島第一原発周辺の強震動とSPGAとの関係を検討した結果として、原子力発電所の耐震設計においてはSPGAを考慮すべきであり(甲D59、D480)、かつ、SPGAを考慮した強震動評価は可能である旨(甲D336)指摘していること、現に、東京港と川崎港では、SPGAから構成される震源モデル(SPGAモデル)を用いた地震動評価の結果に基づいて耐震性能の向上が図られる予定であること(甲D338)、以上の事実が認められる。これらの事実による限り、本件敷地に係るプレート間地震の地震動評価に当たっても、SPGAモデルを用いることが可能であり、かつ、より保守的な評価が可能になるように見える。

しかし、上記1で説示したところによれば、社会通念上、原子炉設置

許可申請に当たり、保守的な地震動評価につながる知見が現れるたびに、 それを網羅的に、かつ、無批判に考慮することまで要求されているかと いえば、疑問なしとしない。あくまでも、当該知見の射程範囲、当該知 見が前提とする問題点をめぐる理論状況、当該知見の学界や実務におけ る広がりや定着度を総合考慮して、上記申請に当たり、当該知見を考慮 することが社会通念上合理的であるといえることが必要であるというべ きである。

これを本件についてみるに、上記認定事実によれば、SPGAモデル は、野津チームリーダーらにおいて、東北地方太平洋沖地震のデータを 解析する中で、新たに提唱された知見であって、地震ガイド(乙39)、 改訂レシピ(乙173)、内閣府検討会が検討した南海トラフの巨大地 震(乙259)のいずれにおいても未だSPGAモデルに基づく評価手 法が取り入れられていることは窺えない。しかも、上記知見を同地震に かかるデータ中にみられる大きな振幅のパルス波の再現手法の一つとし て紹介しつつ、詳細な検討は今後の課題である旨指摘する見解や(乙2 62),太平洋プレート、特に宮城県沖においては地震動が強くなる地 域性があることを指摘する知見(乙87,260)があるというのであ る。そうであれば、南海トラフの巨大地震、ましてやその陸側ケースに も、そのままSPGAモデルがよく適合するかどうかは一概には言い切 れないものというべく、野津チームリーダーはもちろんのこと、ほかに 強震動生成域内での応力パラメータの不均質を考慮したモデルでパルス 波の再現を試みている地震学者,プレート間地震の地震動評価における SPGAモデルの採用の可否やそれをめぐる議論の進捗状況に関する原 子力規制委員会や地震本部の各担当者の証人尋問を経てSPGAモデル が学界や実務において占める位置について慎重に吟味することなしに、 直ちに債務者がSPGAモデルを考慮しなかったことが合理性を欠くと

決めつけるわけにはいかない。そして、上記のような証人尋問の実施が 本件のような保全手続になじまない以上、現時点ではこの点に関する債 権者らの主張は、採用することができないものというほかはない。

エ その他の債権者らの主張について

(ア) 揺れの継続時間について

債権者らは、上記第3の3(2)債権者らの主張欄工のとおり主張し、これに沿う知見(甲D151)の存在を指摘する。

しかし、上記知見は、東北地方太平洋沖地震で観測された長周期地震 動の特性と、過去の昭和東南海・南海地震の強震観測記録の比較から、 想定される東海・東南海・南海地震の連動とその時間差発生(時間差連 動)を考えた地震動シミュレーションに基づき、想定される南海トラフ の巨大地震の長周期地震動の評価を試みたものであることが認められる から(甲D151)、それが、短周期レベルの地震動評価にそのまま当 てはまるか疑問の余地なしとしない。また, 上記知見によれば, 特に, 名古屋や大阪など、東海・東南海・南海の3つの地震セグメントからほ ぼ等しい距離にある平野を対象として、上記3つの地震セグメントが数 分の時間差で連動発生した場合を想定してみたところ、強い揺れの継続 時間が2~3倍長くなり、継続時間が20~30分以上に長くなること が再確認できたというのであって、上記3つの地震セグメントからほぼ 等しい距離にないことが明白な本件敷地についても同様のことがいえる かどうかについては何らの示唆も言及もない(甲D151)。してみる と、上記知見があるからといって、債務者による揺れの継続時間の設定 が直ちに合理性を欠くとまではいえないし、一件記録を精査してもほか に上記設定が合理性を欠くことを窺わせる資料は見当たらない。この点 に関する債権者らの主張は、採用することができない。

(イ) 基準地震動以外の事象について

債権者らは、上記第3の3(2)債権者らの主張欄オ(ア)のとおり主張する。 しかし、債権者らが主張する南海トラフの巨大地震によって誘発され るべき他の事象は、いずれも抽象的な可能性を指摘するものにすぎず、 それらの事象が南海トラフの巨大地震を契機に重畳的に発生することま で想定することが社会通念上要求されているものとは考え難い。この点 に関する債権者らの主張は、採用することができない。

(ウ) 繰返しの揺れについて

債権者らは、上記第3の3(2)債権者らの主張欄オ(イ)のとおり主張する。しかし、一件記録によれば、南海トラフの巨大地震による地震動の応答スペクトルが弾性設計用地震動Sd-1を若干超える周期帯があることが認められるけれども、そのような周期帯は、本件原子炉施設のうち大半の安全上重要な施設に係る固有周期に比して長周期側に偏っており、短周期帯ではむしろ大きくSd-1を下回っていることが認められる(乙94)。上記検討結果による限り、本件原子炉施設のうち安全上重要な施設については、南海トラフの巨大地震による地震動に対して弾性範囲内で挙動し、塑性変形に至るとは考え難いから、この点についてした債務者の評価が合理性を欠くとはいえない。債権者らの上記主張は採用することができない。

- (4) 敷地ごとに震源を特定して策定する地震動(海洋プレート内地震)の想定の相当性について
 - ア 基本震源モデルの地震規模をM8.0に設定していないことについて 債権者らは、上記第3の3(3)債権者らの主張欄アのとおり主張する。そ して、地震本部が作成した平成26年12月19日付け「全国地震動予測 地図2014年版~全国の地震動ハザードを概観して~付録—1」(20 14予測地図)では、「安芸灘~伊予灘~豊後水道」の地域におけるフィ リピン海プレート内の震源断層をあらかじめ特定しにくい地震(以下「伊

予難周辺プレート内地震」という。)の最大マグニチュードが8.0に設定されていることが認められる(甲D92,乙263)。そうだとすると、本件敷地における海洋プレート内地震の地震動評価に当たっては、少なくとも、地震規模をM8.0とする地震を基本震源モデルとするのが自然であるように見える。

しかし、債務者は、「想定スラブ内地震」を設定する前提として164 9年安芸・伊予の地震を検討用地震として選定する過程において、応答ス ペクトルの方法による比較検討を経ており(前提事実),何ら不合理な点 は見当たらない。そして、2014予測地図がいう「震源断層をあらかじ め特定しにくい地震」の最大規模は、現時点ではあくまで暫定値が設定さ れている状況であることが窺える(甲D92)。また、地震本部が平成2 5年12月20日付けで作成した「今後の地震動ハザード評価に関する検 討~2013年における検討結果~」(以下「2013ハザード検討」と いう。)では、伊予灘周辺プレート内地震の最大規模がM8.0に変更さ れているが、その変更の根拠は、当該地域において、1911年6月15 日奄美大島近海を震源域とする地震(M8.0。以下「明治喜界島地震」 という。)と同程度の地震の発生を仮定したことにあることが窺える(乙 181)。しかるに、(ア)明治喜界島地震については、プレート内地震では なく、プレート間地震である可能性を示唆する知見があるほか、明治喜界 島地震の震源付近と伊予灘周辺プレート内地震の震源付近とでは、発震機 構,テクトニクス及びプレート構造に違いがある旨を指摘する知見が散見 され、したがって、現実に、伊予灘周辺プレート内地震の最大地震規模が 明治喜界島地震のそれと同程度には至らない可能性が窺えること(乙18 2),(イ)日向灘長期評価では、「安芸灘〜伊予灘〜豊後水道」の地域にお いて想定される地震の規模が「M6. 7~M7. 4」とされているところ (甲D161), 一件記録を精査しても日向灘長期評価がその後改訂され た形跡が見当たらないこと、(ウ)平成25年中に広島県及び広島市がそれぞれ作成した各地震被害想定報告書における当該地域に係る地震規模の想定は、日向灘長期評価に依拠しており(甲D450,451)、したがって、結局のところ、平成16年2月当時の想定に基づくものにとどまること、(工)上記(イ)の想定は、当該地域における既往の地震の規模に基づいているところ、日向灘長期評価において、1884年以前のマグニチュードの値は近代観測が行われる前の時点のものであり、1885年以降のものに比べ信頼性が劣る旨注意喚起されている上(甲D161)、これらの既往地震の最大規模については、近年、これをM7.0である旨再評価する知見もあること(甲D163)、以上の諸点を指摘することができる。

してみると、債務者が海洋プレート内地震の基本震源モデルの規模について、これをM7.0と設定したことには、理論的な支えが全くないわけではないものというべく、一応の合理性が認められるものといって差し支えない。上記の諸事情に照らすと、上記合理性の有無について確信を得ようとすれば、地震本部の担当者に対する証人尋問を通じて、2014予測地図の策定経緯、2013ハザード検討における伊予灘周辺プレート内地震の地震規模の見直しの経緯、手法及び理論的根拠、2014予測地図及び2013ハザード検討における地震規模の策定と日向灘長期評価の関係等を、債務者が依拠する各種知見を提唱している地震学者やそれに批判的な立場の地震学者の各証人尋問を通じて、上記知見の地震学界における信頼度等を、いずれも慎重に吟味することを要するものといわねばならないが、そのような手続は、本件のような保全手続にはなじまない。この点に関する債権者らの主張は、その余の点も含め、採用することができない。

イ 耐専式の適用性等について

債権者らは、上記第3の3(3)債権者らの主張欄イのとおり主張する。 しかし、耐専式はM8.5の規模の地震まで適用可能であるとされてい

るし(乙168),補正係数についても、敷地周辺における比較的規模の 大きい観測記録があることを踏まえ、これら観測記録を基に算出されてい ることが窺えるから(乙11),債務者が海洋プレート内地震の地震動評 価に当たって耐専式を適用したこと自体は合理的であると認められる。ま た、耐専式のばらつきや不確かさの考慮をいう点については、経験式その ものが内包する不確かさをそのまま当該敷地における地震動評価に当たっ て考慮しないからといって、そのような地震動評価が直ちに合理性を欠く とまでいえないことは、上記(2)ア(イ)で説示したとおりである。そうすると、 債務者において、⑦海洋プレート内地震の地震動評価にあたり、そもそも 耐専式を適用したこと、(イ)1649年安芸・伊予の地震を再現したモデル をM7.0に較正したケース、敷地の真下に想定する地震規模をM7.2 としたケース、アスペリティの位置を断層上端に配置したケース、敷地東 方の領域に水平に近い断層面を考慮したケース(M7. 4)を設定し, 一 定程度の不確かさを想定したこと、(ウ)上記(イ)とは別に、耐専式そのものが 内包する不確かさを考慮しなかったこと、以上の事情が直ちに上記地震動 評価の合理性を失わせることにはならない。この点に関する債権者らの主 張は、採用することができない。

- (5) 震源を特定せず策定する地震動の想定の相当性について
 - ア 新規制基準及び地震ガイドにおける「震源を特定せず策定する地震動」 定めの趣旨や内容については、次のとおり解するのが相当である(福岡高 等裁判所宮崎支部平成28年4月6日決定・判時2290号90頁参照)。
 - (ア) 新規制基準は、基準地震動の策定について、「敷地ごとに震源を特定して策定する地震動」を、最新の科学的技術的知見を踏まえて、詳細な調査を尽くした上で、各種の不確かさを考慮して適切に策定することを基本としつつ、敷地周辺の状況等を十分考慮した詳細な調査を実施しても、なお敷地近傍において発生する可能性のある内陸地殻内の地震の全

てを事前に評価し得るとは言い切れないことから、これを補完するものとして、観測記録を基に各種の不確かさを考慮して「震源を特定せず策定する地震動」を適切に策定することにより、発電用原子炉施設の耐震設計の基準とすべき基準地震動の策定に万全を期することとしたものであり、それを受け、地震ガイドにおいても、「敷地ごとに震源を特定して策定する地震動」及び「震源を特定せず策定する地震動」を相補的に考慮することによって、敷地で発生する可能性のある地震動全体を考慮した地震動として基準地震動を策定するものとされている。

- (イ) このような「震源を特定せず策定する地震動」の位置づけ及び性格等からすれば、新規制基準及びこれを具体化した地震ガイドは、「震源を特定せず策定する地震動」について、震源と活断層を関連付けることが困難な過去の内陸地殻内地震であって震源近傍において強震動が得られたものの観測記録そのものを用いて、その観測記録を基に、当該観測記録に含まれる地盤増幅特性を考慮し、必要に応じて、地盤情報等を用いて観測記録から観測点における解放基盤波を策定した上、当該発電用原子炉施設の敷地及び敷地周辺の特性を踏まえ、当該施設に係る解放基盤表面までの地震波の伝播特性を適切に反映させるなど、各種の不確かさを考慮して当該敷地の地盤物性に応じた応答スペクトルを設定することを求めるものであるということができる。
- イ 観測記録から合理的に導かれる最大の応答スペクトルを考慮すべきこと について
 - (ア) 債権者らは、上記第3の3(4)債権者らの主張欄ア(ア)のとおり主張する。 「震源を特定せず策定する地震動」の策定に当たり「各種の不確かさ」 を考慮すべきことは、新規制基準の策定過程において藤原部門長がその 必要性を主張したことから盛り込まれた経緯が窺えるけれども(甲D8 4)、そうだからといって、考慮すべき「各種の不確かさ」の具体的な

内容いかんが,直ちに藤原部門長の上記主張に拘束される筋合いはない し、実際に策定された新規制基準及び地震ガイドを見ても、考慮すべき 「各種不確かさ」が具体的に列挙されているわけでもない。したがって、 「震源を特定せず策定する地震動」の評価に当たり、藤原部門長の上記 主張に係る事情を常にあまねく考慮しなければならないものとは解され ない。

債務者は、地震ガイドに震源を特定せず策定する地震動の評価において収集対象となる内陸地殻内の地震の例として例示された16の地震のうち、「地表地震断層が出現しない可能性がある地震」として留萌支庁南部地震を選定した。そして、債務者は、留萌支庁南部地震のK-NE T港町観測点の記録について、はぎとり解析の過程における不確かさを考慮して推計される地震動に、原子力発電所の耐震性に求められる保守性をも勘案することによって余裕を持たせた620ガルをもって震源を特定せず策定する地震動として採用しているというのである(乙40)。

そうであれば、債務者は、上記の過程において、K-NET港町観測点での観測記録に含まれる地盤増幅特性を考慮して同観測点における解放基盤波を策定した上、減衰定数の不確かさに加えて推計した地震動にさらに余裕を持たせるなどの考慮を施しているものと認められる。

しかも、本件発電所の解放基盤表面のS波速度はK-NET港町観測点における基盤層のそれよりも大きく、したがって、本件発電所の地盤がより固いこと(乙40)、債務者は、留萌支庁南部地震に加え、「事前に活断層の存在が指摘されていなかった地域において発生し、地表付近に一部の痕跡が確認された地震」として鳥取県西部地震も併せて選定し、その観測記録も用いて「震源を特定せず策定する地震動」の評価を行ったこと(乙11、42、187)、以上の諸点も指摘することができる。

してみると、債務者は、「震源を特定せず策定する地震動」の評価に当たり、はぎとり解析の過程における不確かさに加え、結果として推計された地震動にさらに余裕を持たせたり、別の観測記録をも用いて地震動の評価をしたりするなどの考慮を施しているのであるから、債務者による「震源を特定せず策定する地震動」の策定過程が新規制基準及び地震ガイドの趣旨に反するとか、結果として債務者が策定した「震源を特定せず策定する地震動」の評価が過小になっているなどというには至らない。この点に関する債権者らの主張は、採用することができない。

(イ) 債権者らは、上記第3の3(4)債権者らの主張欄ア(イ)のとおり主張する。 そして、財団法人地域地盤環境研究所が作成した「震源を特定せず策定 する地震動計算業務報告書」及びJNESが作成した「震源を特定せず 策定する地震動の設定に係る検討に関する報告書」によれば、いずれも 上記主張に沿う知見が得られていることが認められる(甲C162, D 93)。

しかし、上記各知見は、いずれも断層モデルを設定して、これをもとに留萌支庁南部地震の地震動を予測した結果であることが明らかであるから、新規制基準及び地震ガイドにおける「震源を特定せず策定する地震動」の定めの趣旨や内容(上記ア)に照らすと、上記各知見が得られているからといって、これを考慮しないで債務者がした「震源を特定せず策定する地震動」の評価が直ちに過小であって合理性を欠くとまではいえない。この点に関する債権者らの主張は、採用することができない。

(ウ) 債権者らは、上記第3の3(4)債権者らの主張欄ア(ウ)のとおり主張するけれども、少なくともMw6.5の規模の地震の震源をサイトの直下又はその近傍の特定の場所に設定して「震源を特定せず策定すべき地震動」を評価すべきであるとする点は、その手法において、上記アで説示した新規制基準及び地震ガイドの趣旨や内容とは相容れない。そして、新規

制基準及び地震ガイドがいう「震源を特定せず策定する地震動」の評価は、震源と活断層を関連付けることが困難な過去の内陸地殻内地震であって震源近傍において強震動が得られたものの観測記録を何らの考慮もしないで用いるわけではないし、「敷地ごとに震源を特定して策定する地震動」を適切に策定し、これと相補的に考慮することが予定されているのであって、その限りにおいて新規制基準及び地震ガイドが合理性のない手法を採用しているとはいえない。したがって、この点に関する債権者の主張は、採用することができない。

ウ 債務者による観測記録の収集について

(ア) 債権者らは、地震ガイドに震源を特定せず策定する地震動の評価において収集対象となる内陸地殻内の地震として例示されている地震が16であること自体が過小であるとか、能登半島地震及び新潟県中越沖地震等、事前の調査によっても活断層が特定できず原子力発電所に想定以上の地震動をもたらした地震が上記例示から漏れているのは相当でない旨主張する。

しかし、新規制基準や地震ガイドの策定に当たった地震津波基準検討チームの構成や検討・審議の過程に関する上記認定事実に照らし、上記例示に係る地震が16であったからといって、そのこと自体が過小であるということはできない。また、能登半島地震や新潟県中越沖地震が上記例示に含まれていないのは、地震津波基準検討チームによる新規制基準や地震ガイドの策定過程において、能登半島地震については地震前の音波探査でも活断層を確認された旨、新潟県中越沖地震については全体像が把握できなかっただけで活断層の存在自体は知られていた旨指摘され、了承されたからであることが窺えるし(乙186)、これと同旨の知見の存在が認められるから(乙188)、地震ガイド上、「震源を特定せず策定する地震動」の評価に当たり観測記録収集用地震として例示

された地震の中に上記各地震が含まれていないことには合理性があるものというべきである。この点に関する債権者らの主張(上記第3の3(4)債権者らの主張欄イ柱書,同(ウ))は、いずれも採用することができない。

(イ) 債権者らは、上記第3の3(4)債権者らの主張欄イ(ア)のとおり主張する。そして、地震ガイドで例示されている16地震中、「事前に活断層の存在が指摘されていなかった地域において発生し、地表付近に一部の痕跡が確認された地震」(Mw6.5以上の地震)とされる2つの地震のうち、鳥取県西部地震のKiK-net日野観測点、「地表地震断層が出現しない可能性がある地震」(Mw6.5未満の地震)とされる14の地震のうち、2011年長野県北部地震のK-Net津南観測点、2013年栃木県北部地震のKiK-net栗山西観測点の各応答スペクトルは、加藤ほか(2004)のスペクトルを一部の周期帯で上回っていることが認められる(乙40、42)。

しかし、地震ガイドにおいては、「震源を特定せず策定する地震動」は、敷地の地盤物性に応じた応答スペクトルを設定して策定されている必要があること、応答スペクトルの設定においては、解放基盤表面までの地震波の伝播特性が反映され、敷地及び敷地周辺の地下構造(深部・浅部地盤構造)が地震波の伝播特性に与える影響が適切に評価されている必要があること、以上2点が求められている。そうであれば、地震ガイドの求めに応じて「震源を特定せず策定する地震動」の評価に当たって用いるべき観測記録は、確かな地盤情報が得られており、はぎとり解析による解放基盤波の算定に耐えるものである必要があるといわねばならない。

しかるに、①鳥取県西部地震のKik-net日野観測点については、KiK-netの地盤データと観測記録(伝達関数)が整合せず、既存の知見によって観測記録を1次元波動論では説明できなないなどの問題

があって、精度の良い解放基盤波の推定が困難であること、②K-NE T津南観測点については、そもそも地盤情報が乏しいため、はぎとり解 析による解放基盤波の算定そのものが困難な状況であること、③KiK -net栗山西観測点については、観測記録に基づく地盤同定を実施し、 はぎとり解析によって解放基盤波を算定したものの、上記同定に係る地 盤モデルは、同観測点における地盤情報(ボーリングデータ)と整合し ないし、既往の知見で指摘されている増幅特性の影響度合いや、その他 の影響要因の有無が判断できず、はぎとり解析手法の適用性が判断でき ないことが判明したこと、以上のとおりであったというのであって(乙 40,187),その検討の過程に不合理な点は見当たらない。また, 確かな地盤情報が足りなければ、事業者(本件では債務者)が自ら地盤 を調査すべきであるかのような指摘(甲D342)とか、断層モデルを 用いた手法を用いて当該観測点の解放基盤における地震動を推定する方 法を併用する旨の提案(乙189)の存在が窺えるけれども、上記①な いし③の各観測点に関する限り、加藤ほか(2004)のスペクトルを上回っ ているのが一部の周期帯に限定されていること、上記①ないし③の各観 測点でなくとも、留萌支庁南部地震のK-NET港町観測点及び鳥取県 西部地震の賀祥ダムの各観測記録に基づき, 地震動評価に耐え得る解放 基盤波が得られていることに照らすと、上記①ないし③の各観測点につ いて、債務者において地盤調査をしなかったとか、断層モデルに用いた 推定を試みなかったからといって、直ちに合理性を欠くとまではいえな い。この点に関する債権者らの主張は、採用することができない。

(ウ) 債権者らは、上記第3の3(4)債権者らの主張欄イ(イ)のとおり主張する。 しかし、地震ガイドは、「震源を特定せず策定する地震動」の評価に 当たり、検討対象地震として「地表地震断層が出現しない可能性がある 地震」(Mw6.5未満の地震)を適切に選定することを求める一方、

「事前に活断層の存在が指摘されていなかった地域において発生し、地 表付近に一部の痕跡が確認された地震」(Mw6.5以上の地震)につ いては、検討対象地震の選定に当たって検討を加え、必要に応じて選定 することを求めている(乙39)。そして、後者は、震源断層がほぼ地 震発生層の厚さ全体に広がっているものの、地表地震断層としてその全 容を表すまでには至っていない地震であり、孤立した長さの短い活断層 による地震が相当するけれども,活断層や地表地震断層の出現要因の可 能性として、地域によって活断層の成熟度が異なること、上部に軟岩や 火山岩、堆積層が厚く分布する場合や地質体の違い等の地域差があるこ とが考えられるというのである(乙39)。そうであれば、「事前に活 断層の存在が指摘されていなかった地域において発生し、地表付近に一 部の痕跡が確認された地震」を観測記録収集用の地震として選定するに 当たっては,上記の観点からする地域差について検討を加えることが地 震ガイドにおいてそもそも求められているものというべく、地域差をめ ぐる検討の結果として、当該地震を観測記録収集用の地震として選定し ないことは、もとより地震ガイドが予定していることといわねばならな い。また、逆に、地震ガイドは、その文言を見る限り、「事前に活断層 の存在が指摘されていなかった地域において発生し、地表付近に一部の 痕跡が確認された地震」(Mw6.5以上の地震)を観測記録収集用地 震として選定するかどうかの検討に当たり、上記の観点からする地域差 を除くその他の事情(例えば、当該検討の俎上に上っている地震の個別 具体的な観測記録の内容とか、同地震と同程度の規模の地震が当該発電 用原子炉施設の敷地の直下又はその近傍において発生する可能性の程度 等)まで考慮すべき旨を求めているわけでもない(乙39)。

そうであるところ、債務者は、地震ガイドに収集対象となる内陸地殻 内の地震として例示されている16の地震のうち、「事前に活断層の存

在が指摘されていなかった地域において発生し、地表付近に一部の痕跡 が確認された地震」(Mw6.5以上の地震)とされる2つの地震(岩 手・宮城内陸地震,鳥取県西部地震)のそれぞれについて,上記観点か らする地域差を検討したこと,本件発電所立地地点と岩手・宮城内陸地 震の震源域では、微小地震の発生状況(前者は極めて低調で、深さ12 km以浅で発生し、後者は非常に活発で、深さ約20km以浅で発生する), 地形・地質(前者は変位地形・リニアメントなしで、堅硬かつ緻密な結 晶片岩が少なくとも地下2kmまで連続し、後者は孤立した長さの短い活 断層があり、新第三紀以降の火山岩、堆積岩が厚く分布する), 第四紀 火山との位置関係(前者は火山と離隔があり、後者は火山と近接する)、 地震地体構造区分(前者は西南日本弧外帯(北縁),後者は東北日本弧 外帯と内帯の境界)など、活断層の成熟度、軟岩や火山岩及び堆積層の 上部厚さの分布並びに地質体等の面で地域差が認められること,一方, 本件発電所立地地点と鳥取県西部地震の震源域では、活断層の成熟度及 びこれに寄与する歪み蓄積速度や地下の均質性、地震地体構造には差が 見られるものの,重力異常に有意な違いは認められない上,大局的には いずれも西南日本の東西圧縮横ずれの応力場であるといった共通点があ ること、以上の事実が一応認められる(乙40、42)。そうであれば、 岩手・宮城内陸地震と本件発電所の立地地点とでは、地震ガイドが指摘 する地域差が顕著に認められる上に、地域差の点をひとまず措くとして も、鳥取県西部地震と本件発電所の立地地点との比較において指摘した ような、大局的に見た場合における何らかの共通点が見出せるわけでも ないものというべきである。

してみると、債務者は、岩手・宮城内陸地震と鳥取県西部地震の双方 について、地震ガイドの求めに応じた地域差の検討を遂げ、その結果と して前者については観測記録収集用地震として選定しなかったのであっ て、そのことは債務者が鳥取県西部地震を観測記録収集用地震として選定するに至った経緯との比較においても不自然ではないものというべきである。したがって、債務者が岩手・宮城内陸地震を観測記録収集用地震として選定しなかったことが合理性を欠くものとはいえない。この点に関する債権者らの主張は、採用することができない。

(6) 年超過確率について

ア 債権者らは、上記第3の3(5)債権者らの主張欄アのとおり主張する。

しかし、地震ガイドによれば、地震ハザード解析による一様ハザードス ペクトルの算定においては、例えば、原子力学会(2007)や地震本部による 「確率論的地震動予測地図」、原子力安全基盤機構による「震源を特定し にくい地震による地震動:2005」、「震源を特定せず策定する地震動: 2009 等に示される手法を適宜参考にして評価するものとされており(乙 39),原子力学会(2015)による評価は予定されていない。また、原子力 学会(2015)は、平成26年3月から同年5月18日までの間、公衆審査に 付されていたことが窺えるけれども、これを受けてその内容が確定し、現 実に発行されたのが本件原子炉に係る発電用原子炉設置変更許可処分がさ れた平成27年7月15日よりも前であったことを認めるに足りる資料は ないから、債務者が上記評価に当たって原子力学会(2015)の内容を踏まえ ていなかったからといって,直ちに当該評価が不合理であるというわけに はいかない。また、平成17年から平成23年までの間に、国内の原子力 発電所において生じた基準地震動を超過する地震が5回発生したとはいえ (審尋の全趣旨),その後の知見に基づく分析によれば,いずれも,当該 発電所が所在する地域の特性(震源特性、伝播特性、増幅特性)に関する 検討が必ずしも十分でなかったことによるものであることが窺えるから (乙24ないし26, 29, 30, 89), そのような自称が上記期間中 に複数回発生したからといって、債務者が算出した年超過確率が国際的な

基準(10⁻⁴以下)を満たさないと即断することはできない。この点に関する債権者らの主張は、採用することができない。

イ また、債権者らは、上記第3の3(5)債権者らの主張欄イのとおり主張する。

しかし、債務者が基準地震動策定の際にした各種不確かさやばらつきの 考慮のありようが相応の合理性を有することは上記(2)ないし(5)の中で説示 したとおりであるし、ロジックツリーにおける重み付けに関する指摘は憶 測の域を出るものではない。この点に関する債権者らの主張も採用の限り でない。

(7) 小括

以上によれば、基準地震動の策定について、新規制基準及びこれを具体化 した地震ガイドの定めが不合理であるということはできないし、債務者によ る基準地震動の策定が新規制基準及び地震ガイドに適合するとした原子力規 制委員会の判断や、それへ至る過程に不合理な点はない。

- 4 耐震設計における重要度分類の合理性(争点4)について
 - (1) 新規制基準における耐震重要度分類について
 - ア 新規制基準においては、設計基準対象施設(原子力発電所の安全設計の基本となる施設)を、運転時の異常な過渡変化又は設計基準事故の発生を防止し、地震により発生するおそれがある設計基準対象施設の安全機能の喪失(地震に伴って発生するおそれがある津波及び周辺斜面の崩壊等による安全機能の喪失を含む。)及びそれに続く放射線による公衆への影響を防止する観点から、各施設の安全機能が喪失した場合の影響の相対的な程度(以下「耐震重要度」という。)に応じて、Sクラス、Bクラス及びCクラスにそれぞれ分類している(以下「耐震重要度分類」という。)。(設置許可基準規則別記2第4条2)
 - (ア) Sクラスに分類される施設は、地震により発生するおそれがある事象

に対して、原子炉を停止し、炉心を冷却するために必要な機能を持つ施設、自ら放射性物質を内蔵している施設、当該施設に直接関係しておりその機能喪失により放射性物質を外部に拡散する可能性のある施設、これらの施設の機能喪失により事故に至った場合の影響を緩和し、放射線による公衆への影響を軽減するために必要な機能を持つ施設及びこれらの重要な安全機能を支援するために必要となる施設、並びに地震に伴って発生するおそれがある津波による安全機能の喪失を防止するために必要となる施設であって、その影響が大きいものをいい、少なくとも次の施設をSクラスとすることが要求されている。

- ・ 原子炉冷却材圧力バウンダリを構成する機器・配管系
- ・ 使用済燃料を貯蔵するための施設
- ・ 原子炉の緊急停止のために急激に負の反応度を付加するための施設, 及び原子炉の停止状態を維持するための施設
- ・ 原子炉停止後、炉心から崩壊熱を除去するための施設
- ・ 原子炉冷却材圧力バウンダリ破損事故後、炉心から崩壊熱を除去す るための施設
- ・ 原子炉冷却材圧力バウンダリ破損事故の際に、圧力障壁となり放射 性物質の放散を直接防ぐための施設
- ・ 放射性物質の放出を伴うような事故の際に、その外部放散を抑制するための施設であり、上記の「放射性物質の放散を直接防ぐための施設」以外の施設
- ・ 津波防護機能を有する設備(以下「津波防護施設」という。)及び 浸水防止機能を有する設備(以下「浸水防止設備」という。)
- ・ 敷地における津波監視機能を有する施設(以下「津波監視設備」という。)
- (イ) Bクラスに分類される施設は、安全機能を有する施設のうち、機能喪

失した場合の影響がSクラス施設と比べ小さい施設をいい、次の施設が例示されている。

- 原子炉冷却材圧力バウンダリに直接接続されていて、一次冷却材を 内蔵しているか又は内蔵し得る施設
- ・ 放射性廃棄物を内蔵している施設(ただし,内蔵量が少ない又は貯蔵方式により,その破損により公衆に与える放射線の影響が実用発電用原子炉の設置,運転等に関する規則(昭和53年通商産業省令第77号)第2条第2項第6号に規定する「周辺監視区域」外における年間の線量限度に比べ十分小さいものは除く。)
- ・ 放射性廃棄物以外の放射性物質に関連した施設で、その破損により、 公衆及び従事者に過大な放射線被曝を与える可能性のある施設
- ・ 使用済燃料を冷却するための施設
- ・ 放射性物質の放出を伴うような場合に、その外部放散を抑制するための施設で、Sクラスに属さない施設
- (ウ) Cクラスに分類される施設は、Sクラスに属する施設及びBクラスに 属する施設以外の一般産業施設又は公共施設と同等の安全性が要求され る施設をいう。
- イ また、設置許可基準規則4条1項に規定する「地震力に十分に耐えること」を満たすために、耐震重要度分類の各クラスに属する設計基準対象施設の耐震設計に当たっては、次の方針によることとされている。(設置許可基準規則解釈別記2第4条3項)
 - (ア) Sクラス (津波防護施設,浸水防止設備及び津波監視設備を除く。)
 - ・ 弾性設計用地震動による地震力又は静的地震力のいずれか大きい方 の地震力に対しておおむね弾性状態に留まる範囲で耐えること。
 - ・ 建物・構築物については、常時作用している荷重及び運転時に作用 する荷重と、弾性設計用地震動による地震力又は静的地震力を組み合

わせ, その結果発生する応力に対して, 建築基準法等の安全上適切と 認められる規格及び基準による許容応力度を許容限界とすること。

・ 機器・配管系については、通常運転時、運転時の異常な過渡変化時及び事故時に生じるそれぞれの荷重と、弾性設計用地震動による地震力又は静的地震力を組み合わせた荷重条件に対して、応答が全体的におおむね弾性状態に留まること。なお、「運転時の異常な過渡変化時及び事故時に生じるそれぞれの荷重」については、地震によって引き起こされるおそれのある事象によって作用する荷重及び地震によって引き起こされるおそれのない事象であっても、いったん事故が発生した場合、長時間継続する事象による荷重は、その事故事象の発生確率、継続時間及び地震動の超過確率の関係を踏まえ、適切な地震力と組み合わせて考慮すること。

(イ) Bクラス

- 静的地震力に対しておおむね弾性状態に留まる範囲で耐えること。
 また、共振のおそれのある施設については、その影響についての検討を行うこと。その場合、検討に用いる地震動は、弾性設計用地震動に2分の1を乗じたものとすること。
- ・ 建物・構築物については、常時作用している荷重及び運転時に作用 する荷重と静的地震力を組み合わせ、その結果発生する応力に対して、 建築基準法等の安全上適切と認められる規格及び基準による許容応力 度を許容限界とすること。
- ・ 機器・配管系については、通常運転時、運転時の異常な過渡変化時 の荷重と静的地震力を組み合わせ、その結果発生する応力に対して、 応答が全体的におおむね弾性状態に留まること。

(ウ) Cクラス

静的地震力に対しておおむね弾性状態に留まる範囲で耐えること。

- ・ 建物・構築物については、常時作用している荷重及び運転時に作用 する荷重と静的地震力を組み合わせ、その結果発生する応力に対して、 建築基準法等の安全上適切と認められる規格及び基準による許容応力 度を許容限界とすること。
- ・ 機器・配管系については、通常運転時、運転時の異常な過渡変化時 の荷重と静的地震力を組み合わせ、その結果発生する応力に対して、 応答が全体的におおむね弾性状態に留まること。
- ウ 上記ア、イによれば、新規制基準は、地震により発生する可能性のある環境への放射線による影響の観点から、建物・構築物及び機器・配管系の耐震重要度分類を行っていることが認められるところ、これは人的物的資源が有限であることを前提として、安全性を適切に確保するために、上記分類に応じて耐震設計を行うことで有限である人的物的資源を効率的に分配し設備を維持・管理していくこととされたものと考えられる。そして、IAEAの「基本安全原則」(乙43)も、「原則5:防護の最適化」として、「合理的に達成できる最高レベルの安全を実現するよう防護を最適化しなければならない」とし、「許認可取得者が安全のために投入する資源及び規制の範囲と厳格さ並びにその適用性は、放射線リスクの程度及びそれらの実用的な管理のしやすさに見合ったものでなければならない」と規定して、同様の発想に立って防護の最適化を図るよう求めているものと解するのが相当である。そうすると、上記のような新規制基準における耐震重要度分類の在り方は、社会通念に照らして合理的であると認められる。

(2) 外部電源について

ア 上記(1)アによれば、外部電源は耐震重要度分類においてCクラスとされていることが認められる。外部電源は、全交流電源喪失を免れるために必要な設備であるとはいえるけれども、さればといって、外部電源の全てについてSクラスやBクラスに分類してしまうと、外部の変電所に加えて、

当該変電所に電源を供給する発電所、送電線等に至るまで全ての施設・設 備を上記各クラスに分類し、各クラスに見合った内容の耐震設計をしなけ ればならないことになり、そうなれば、そこに相当の人的物的資源が割か れることになってしまい、社会通念上も現実的でないものといわなければ ならない。また、新規制基準は、外部電源には非常時における原子炉施設 の安全を確保するための電源供給の役割を担わせるものではないことを前 提に、「多重性又は多様性を確保し、及び独立性を確保し、その系統を構 成する機械又は器具の単一故障が発生した場合であっても、運転時の異常 な過渡変化時又は設計基準事故時において工学的安全施設及び設計基準事 故に対処するための設備がその機能を確保するために十分な容量を有する」 非常用電源設備の設置を要求して(設置許可基準規則33条7項)、外部 電源が機能喪失した場合にも、非常用電源設備によって設計基準事故等に 対処できるようにし、さらに、外部電源及び上記非常用電源設備が機能喪 失するような重大事故等が発生した場合に備えて, 「炉心の著しい損傷, 原子炉格納容器の破損、貯蔵槽内燃料体等の著しい損傷及び運転停止中原 子炉内燃料体の著しい損傷を防止するために必要な電力を確保するために 必要な設備」(同57条)として代替電源設備を設置することを要求して いると考えられる。そして、上記非常用電源設備は耐震重要度分類Sクラ スの設計基準事故対処設備として、上記代替電源設備のうち常設のものは 常設耐震重要重大事故防止設備及び常設重大事故緩和設備として(同39 条1項1、3号)、可搬型のものは可搬型重大事故等対処設備として(同 43条), いずれも基準地震動SsC対する耐震安全性を要求することに よって、可及的に電源供給面における耐震安全性を確保しようとするもの と考えられる。してみると、外部電源を耐震重要度分類Cクラスとする新 規制基準の定めは、合理的であると認められる。

イ そして、債務者は、発電機が停止し、かつ、外部電源が喪失した場合に

備えて、Sクラスの耐震安全性を有する非常用ディーゼル発電機を設置し (なお、本件発電所においては、1台で必要な容量を有するものを2台各 々建屋内の別の部屋に備え、それぞれ7日間にわたって必要な電力を供給 することができるだけの燃料を備蓄するなどして信頼性を確保してい る。)、さらに、外部電源や非常用ディーゼル発電機の機能が失われたこ とにより重大事故等が発生した場合において、炉心の著しい損傷、原子炉 格納容器の破損等の防止のために必要な電力を確保するための代替の電源 として、重大事故等対処設備として耐震安全性を有する空冷式非常用発電 装置、電源車、蓄電池、可搬型直流電源装置、代替電気設備受電盤等を配 備し、これらの電源については、共通要因によって外部電源や非常用ディ ーゼル発電機と同時に機能を喪失しないよう、空冷式非常用発電装置、電 源車、蓄電池等について、独立した伝線路により接続するとともに、外部 電源や非常用ディーゼル発電機との位置的分散を考慮して設置しているこ とが一応認められる(乙11、13、59、114~117)から、電源 供給面における安全性に不合理な点はないと認められる。

ウ 債権者らは、上記第3の4債権者らの主張欄(1)のとおり主張する。

しかし、外部電源が耐震重要度分類Cクラスに位置付けられているのは、その耐震重要度が上記アで見たとおりだからであって、単に経済性を優先させたことに基づくものとはいえないし、地震のリスクの抽象的な大小のみによって耐震重要度分類を定めることが合理的であるともいい難い。また、債務者の取った措置が上記イのとおりだからといって、直ちにそれが債権者らの主張する「綱渡りの安全論」であるということもできない。この点に関する債権者らの主張は、採用することができない。

また、債権者らは、重大事故等対処設備は、設計基準対象施設が機能喪失して重大事故に至るおそれのある事故或いは重大事故が発生した場合に働くべき設備であるから、基準地震動 S s の何倍かの地震動に対する安全

性が確保されていることが、その機能を発揮させるべき場面において有効に働くことを保証するものであるとか、重大事故等対処設備がSクラスと同等の耐震安全性であるのでは、耐震重要度分類の観点で考えれば、耐震安全性の確保に欠ける分類である旨も主張する。

しかし、新規制基準は、常設重大事故防止設備及び可搬型重大事故等対処設備である代替電源設備について、外部電源や非常用ディーゼル発電機と同時に共通要因によって機能が損なわれるおそれがないよう、位置的分散を考慮して異なる保管場所に保管するなどの適切な措置を講じることを求めている(設置許可基準規則43条)のであるから、基準地震動Ssを超える地震動に対する耐震安全性を確保していなくても、その評価が適切に行われる限りは、非常用ディーゼル発電機やその他代替電源設備が同時に機能を喪失するおそれを社会通念上無視し得る程度に低減することができると考えられる。したがって、新規制基準自体は不合理でないと認めることができるから、債権者らの上記主張は採用することができない。

(3) 計測制御系統設備について

ア 新規制基準においては、炉心の中性子東、中性子東分布、原子炉推移、原子炉冷却材系の圧力、温度及び流量、原子炉冷却材の水質並びに原子炉格納容器内の圧力、温度及びガス濃度等のパラメータを、通常運転時及び運転時の異常な過渡変化時においても想定される範囲内で制御、監視し、また、設計基準事故が発生した場合においても、状況を把握し、対策を講じるために必要なパラメータとして、原子炉格納容器内の圧力、温度、水素ガス濃度及び放射性物質濃度等を十分な測定範囲及び期間にわたり監視することなどができる計測制御系統施設の設置が求められている(設置許可基準規則23条)。これに加えて、設置許可基準規則58条は、重大事故等が発生し、計測機器の故障により当該重大事故等に対処するために監視することが必要なパラメータを計測することが困難となった場合におい

て当該パラメータを推定するために有効な情報を把握できる計装設備の設置を要求している。そうすると、これらの規定に従って適切に計測機器が設置されている限りは、仮に重大事故等が発生して原子炉の温度、圧力が上昇するなどしても、上記計装設備によって、原子炉圧力容器内の温度、圧力及び水位を推定することが可能となるのであるから、新規制基準は、社会通念上合理的であると認められるというべきである。

イ そして、債務者は、①本件原子炉の計測設備について、通常運転時及び 異常な過渡変化時においては、炉心中性子東,中性子東分布,原子炉水位, 原子炉冷却材圧力、温度及び流量、原子炉格納容器内圧力及び温度等の重 要なパラメータを監視できるようにしていること,②設計基準事故が発生 した場合においては、状況を把握して対策を講じるために必要な原子炉格 納容器内の圧力、温度等のパラメータについて、設計基準事故時に想定さ れる環境下において十分な測定範囲及び期間にわたり連続して監視、記録 できるようにしていること、③重大事故等発生時において原子炉の状態を 把握するために特に監視することが重要となる「重要監視パラメータ」 (原子炉容器圧力・温度・水位,原子炉格納容器内圧力・温度・水位等) を選定し、本来これらを監視するための計測設備が故障等した場合にも原 子炉施設の状況を把握することができるよう, 重要監視パラメータを推定 するための「重要代替監視パラメータ」を計測する設備を重大事故等対処 設備(常設耐震重要重大事故防止設備又は常設重大事故緩和設備)と位置 付けて整備するとともに、可搬型計測器、電源(空冷式非常用発電装置) 等も新たに整備していること,以上の事実が一応認められる(乙11,1 3)。上記①ないし③の措置は、その内容を上記アで見たところに照らし、 合理的であると認められる。

ウ 債権者らは、上記第3の4債権者らの主張欄(2)のとおり主張する。 しかし、債権者らが主張するような水位計の誤表示等については、新規 制基準において、そのような場合に備えて当該パラメータを推定するため に有効な情報を把握できる計装設備の設置を求め、債務者においてこれに 応えて上記イ③のような設備を整備しているというのであるから、債権者 らの主張に係る懸念は、一応拭われているものということができる。この 点に関する債権者らの主張は、採用することができない。

(4) 非常用取水設備について

ア 本件原子炉施設における非常用取水設備は、海水取水口、海水取水路、海水ピット(海水ピットスクリーン室、海水ピットポンプ室及び海水ピット堰)から構成される設備であって、設計基準事故及び重大事故等の収束に必要となる原子炉補機冷却海水系の冷却用の海水を確保する機能を有していること、上記一群の設備のうち、海水ピット堰は耐震重要度分類Sクラスに、その他の設備はいずれもCクラスに分類されていること、以上の事実が認められる(審尋の全趣旨)。

もっとも、本件原子炉施設においては、上記一群の設備のうち、海水ピット堰を除く設備は、耐震重要度分類Cクラスとはいえ、いずれも常設重大事故防止設備及び常設重大事故緩和設備として位置付けられ、基準地震動Ssに対する耐震安全性を確保するように設定されているというのである(乙11、119~123)。そうであれば、実際には、これらの設備も耐震重要度分類Sクラスの設備と同等の耐震性能を有しているものというべく、非常用取水設備の耐震重要度分類やそれに基づく債務者の措置はいずれも合理的であると認められる。

イ 債権者は、上記第3の4債権者らの主張欄(3)のとおり主張するけれども、 上記アの説示に照らし、採用することができない。

(5) 小括

以上によれば、耐震重要度分類について、新規制基準の定めが不合理であるということはできないし、本件原子炉施設における上記各種施設又は設備

に係る耐震重要度分類やそれに基づく債務者の措置につき,新規制基準に適合するとした原子力規制委員会の判断や,それへ至る過程に不合理な点はない。

- 5 使用済燃料ピット等に係る安全性(争点5)について
 - (1) 堅固な施設で囲い込まれていない点について
 - ア 債権者らは、上記第3の5債権者らの主張欄(1)のとおり主張する。債権者らの主張は、要するに、①外部からの不測の事態により使用済燃料ピットが冠水状態が維持できなくなるような事態が生じないようにするため、及び②使用済燃料ピットが冠水状態が維持できなくなった場合に放射性物質の放出を防止するため、使用済燃料ピットが堅固な施設で囲い込まれていなければならないのに、本件原子炉施設における使用済燃料ピットの構造は上記要請を満たさないというものである。

イ 上記①の点について

外部からの不測の事態に対する防御という点について,新規制基準においては,想定される自然事象(洪水,台風,竜巻,落雷,地すべりなど)及び人為事象(故意によるものを除く。航空機落下等の飛来物,爆発,船舶の衝突等)に対して,安全施設が安全機能を損なわないことを求めており(設置許可基準規則6条),これらの評価が適切に行われる限りは,使用済燃料ピットが堅固な施設で囲い込まれていなくても,社会通念上求められる安全性に欠けるところはないものというべく,このような新規制基準の内容は合理的であるというべきである。

債権者らは、その主張に沿う資料として、英国、フランス、フィンランドにおける原子炉格納容器の設計例を指摘するが(甲D392)、上記資料からは、むしろ米国、英国、フランス、フィンランド等の国々において、航空機衝突対策として使用済燃料ピットを堅固な施設で囲い込む方法は採用されていないことが窺われるから、上記資料があるからと

いって,本件原子炉施設において使用済燃料ピットが堅固な施設で囲い込まれていないことについて合理性を欠くわけではないというべきである。

また、債権者らは、「外部からの不測の事態」として、具体的には、 竜巻による鋼製材の飛来物や航空機衝突を例示するところ、債務者は、 竜巻については、原子力発電所の竜巻影響評価ガイドを踏まえ、使用済 燃料ピットを含む原子炉建屋等を設計対象施設とし、飛来物の衝突によ る施設の貫通及び裏面剥離を想定するなどしても安全機能が損なわれな いことを確認していることが一応認められるし(乙11,13。なお、 債権者らの主張中に、上記ガイドやこの想定が不合理である旨の具体的 な主張は見当たらない。)、故意によるものでない航空機落下について も、航空機落下確率が小さいため人為事象として想定する必要はないと 評価されている(なお、この評価が不合理でないことは後記10(7)のと おりである。)のであるから、これらとの関係で、外部からの不測の事 態が生じることで本件原子炉に社会通念上許容されない程度のリスクが 発生するということはできない。

さらに、故意による航空機衝突との関係では、新規制基準においてこれを安全施設の設計上考慮すべき旨求められていることを窺うことはできず、せいぜい、航空機衝突により事故が発生した場合に備えて、重大事故等対処設備や特定重大事故等対処設備を設置することが求められているにすぎない(ただし、特定重大事故等対処施設については設置が猶予されている。)ところ、このような新規制基準が不合理でないというべきことは、後記10(6)のとおりである。

してみると、外部からの不測の事態に対する防御という点において、 本件原子炉施設(使用済燃料ピット)の安全性に欠けるところはないと いうべきである。この点に関する債権者らの主張は、採用することがで きない。

ウ 上記②の点について

確かに、本件原子炉施設における原子炉、原子炉格納容器と使用済燃料ピットの各構造を単純に比較すると、前提事実で見たような差があることは明らかである。

しかし、炉心に燃料集合体が装荷された原子炉等は、高温(約300 ℃)、高圧(大気圧の約150倍)の原子炉冷却材(水)で満たされており、仮にLOCAが発生した場合には、原子炉冷却材が、高温、高圧の水蒸気となって瞬時に流出するとともに、放射性物質を閉じ込める役割を果たす燃料被覆管の一部が損傷するなどして、放射性物質が放出されるおそれがあることから(審尋の全趣旨)、そのような放射性物質を含む高温、高圧の水蒸気の周辺環境への放出を万が一にも防止するため、耐圧性能を有する原子炉格納容器のような「堅固な施設」による閉じ込めが必要となる。これに対し、使用済燃料は、大気圧の下、約40℃以下に保たれた使用済燃料ピット水により冠水状態で貯蔵されている限り(前提事実(4)カ)、LOCAの際に見られるような放射性物質を含む高温、高圧の水蒸気が瞬時に発生、流出するような事態が生じる可能性は一件記録を精査しても見出し難い。

そうであれば、使用済燃料ピットと、原子炉や原子炉格納容器とは、 想定される放射能物質の漏出のおそれにそもそも差があるものというべ く、前者が後二者ほどの「堅固な施設」による囲い込みまでは要しない とすることは、社会通念に照らして不合理でないということができる。

債権者らは、その主張に沿う知見として、福島第一原発事故の教訓として日本原子力学会の指摘を挙げるけれども(甲D14)、同指摘において日本原子力学会が提言するところは、「使用済燃料貯蔵プールの自然循環冷却システムを導入する」とか、「空冷の中間貯蔵設備を導入す

る」などの方策にとどまり、使用済燃料ピットを原子炉格納容器並みの「堅固な施設」によって囲い込む必要性まで挙げていることは窺えないから、上記の知見があるからといって、使用済燃料ピットを堅固な施設で囲い込むべきであるとまでいうことはできない。

してみると、内部から放射性物質の放出の防止という点において、本件原子炉施設(使用済燃料ピット)の安全性に欠けるところはないというべきである。この点に関する債権者らの主張は、採用することができない。

(2) 使用済燃料ピットの耐震安全性について

債権者らは、上記第3の5債権者らの主張欄(2)のとおり主張する。そして、使用済燃料ピット水冷却設備及び使用済燃料ピット計測設備がいずれも耐震重要度分類Sクラスに分類される設備でないことは、債権者らの主張するとおりであると認められる(審尋の全趣旨)。

しかし、債務者は、地震動の影響により本件原子炉施設の使用済燃料ラック及び使用済燃料ピットをいずれも耐震重要度分類Sクラスの施設と位置付け、基準地震動Ssに対する耐震安全性の評価を行い、いずれも基準地震動Ssに対する耐震安全性を有している旨確認していること、使用済燃料ピット水補給設備(燃料取替用水タンク,燃料取替用水タンクポンプ等)を耐震重要度分類Sクラスとし、基準地震動Ssに対する耐震安全性を有している旨確認していること、使用済燃料ピット水冷却設備のうち、通常時において使用済燃料ピット水の冷却に用いる使用済燃料ピット冷却器、使用済燃料ピットポンプ及び配管については、波及的影響の観点から評価を行い、基準地震動Ssに対する耐震安全性を有している旨確認していること、使用済燃料ピットの状態を確認するための計測設備(水位計、温度計及び監視カメラ)や可搬式の水位計を、可搬型重大事故等対処設備又は常設重大事故緩和設備として設置し、基準地震動Ssに対する耐震安

全性を有している旨確認していること、以上の事実が一応認められる(乙 96~105)。

そうであれば、使用済燃料ピット水冷却設備の冷却と循環に最低限必要な設備の限度では、耐震重要度分類のいかんにかかわらず、基準地震動Ssに耐え得る強度を備えているほか、万一これが損傷した場合にホウ酸水を使用済燃料ピットへ補給するための設備及び使用済燃料ピット内の冷却水の現状を把握する設備はもとより、使用済燃料ラック及び同ピットがいずれも耐震重要度分類Sクラスとされ、それに見合う強度を有しているというのであるから、少なくとも基準地震動Ssを前提としても使用済燃料の冠水状態は確保することができるものといってよい。したがって、使用済燃料ピット水冷却設備及び使用済燃料ピット計測設備がいずれも耐震重要度分類Sクラスに分類されていないからといって、債務者が現実に取った措置が合理性を欠くことにはならない。この点に関する債権者らの主張は、採用することができない。

(3) 稠密化された使用済燃料プールの危険性について

一件記録によれば、本件原子炉施設の使用済燃料ピットにおける使用済燃料の保管にあたっては、全炉心燃料及び1回の燃料取替えに必要とする燃料集合体数等を考慮して、それに十分に余裕を持たせた設備容量が確保されていること、仮に、①設備容量一杯まで燃料を貯蔵し、かつ、②純水で満たされる、というより厳しい条件を想定しても、使用済燃料ピットの未臨界性を確保できること、以上2点が確認されていることが認められる(乙11)。そして、使用済燃料ピットにおける使用済燃料の保管方法(前提事実(4)カ)にも鑑みると、債務者がその設定に係る設備容量を有する使用済燃料ピット内において使用済燃料を冠水させる方法でこれを保管することには合理性が認められる。

債権者らは、上記第3の5債権者らの主張欄(3)のとおり主張する。

しかし、使用済燃料の乾式貯蔵は、2、3年をかけて改革すべき中期対策として提案されている段階に過ぎず(甲D14)、世界的に見ても、各国の規制当局が乾式貯蔵へ向けた行動に着手しない旨批判されている状況にあり(甲D13)、したがって、乾式貯蔵が国際基準として確立されたとまではいい難い。また、使用済燃料ピット内における使用済燃料の配置のありようについても、米国原子力規制委員会から市松模様にして配置する運用が各事業者に指示されているとされているという状況にあることはいえても(甲C10)、そのような配置方法が国際基準として確立されていることが窺える資料も見当たらない。この点に関する債権者らの主張は、その前提を欠いており、採用することができない。

(4) 重量物落下による危険性について

一件記録によれば、債務者は、落下時に使用済燃料ピットの機能に影響を及ぼす重量物として、燃料取扱棟の構造物、使用済燃料ピットクレーン及び燃料取扱棟クレーンを抽出したこと、上記抽出に係る各重量物のうち、①燃料取扱棟の構造物については基準地震動Ssにより使用済燃料ピット内へ落下することがないように、②使用済燃料ピットクレーンについては基準地震動Ssによる地震力によってクレーン本体、転倒防止金具及び走行レールに発生する荷重が許容応力以下となる(すなわち、基準地震動Ssにより転倒、破損等して使用済燃料ピット内へ落下することがない)ように、③燃料取扱棟クレーンについてはその走行レールを使用済燃料ピットの上空にかからないように敷設し、もって、仮に走行レールから脱線しても、建屋の構造上、クレーン本体及び吊荷が使用済燃料ピットに落下しないように、それぞれ対策を講じたことが認められる(乙11、13)。そうであれば、使用済燃料ピット内の重量物を設置する態様は合理的であるというべきである。

一方、債権者らは、上記第3の5債権者らの主張欄(4)のとおり主張する。 しかし、同主張は、基準地震動Ssを前提としない抽象的な危険を前提とし、 要するに、最新の科学的技術的知見を踏まえて合理的に予測される規模の自然災害を想定した発電用原子炉施設の安全性を超え、絶対的な安全性又はそれに準じる安全性の確保を求めるものであって、上記1の説示に照らし、採用することができない。

(5) 小括

以上によれば、使用済燃料ピットの安全性に関する新規制基準の内容が不合理であるとはいえないし、本件原子炉施設における使用済燃料ピットに係る債務者の設計や設置が新規制基準に適合するとした原子力規制委員会の判断や、それへ至る過程に不合理な点はない。

- 6 地すべりと液状化現象による危険性(争点 6) について
 - (1) 新規制基準の合理性について

前提事実によれば、新規制基準は、基準地震動を用いた解析により、発電用原子炉施設の周辺斜面の崩壊のおそれがないことを確認させるとともに、そうでない場合には当該部分の除去や斜面の保持等の措置を取らせることにより、周辺斜面の崩壊による影響を耐震重要施設に及ぼさないようにすることを求めているものといえ、その内容に不合理な点は何ら見当たらない。

- (2) 地すべりによる危険性について
 - ア 重油タンクの周辺斜面の解析モデルに関する主張について 債権者らは、上記第3の6債権者らの主張欄(1)アのとおり主張する。

しかし、本件原子炉施設の重油タンクとその東側斜面の法尻との距離は約90m、東側斜面の高さは約30mであるところ(前提事実(11)イ(ウ))、斜面の高さと地すべり土塊の到達距離との関係について、地すべり土塊の到達距離は斜面の高さの概ね1.4倍(50m未満の場合は50m)に収まるとする知見(乙238)及び土砂災害による被害影響範囲として急傾斜地(傾斜30度以上のがけ)の高さの2倍(概ね50mを限度)とする知見(乙239)に照らすと、重油タンクと東側斜面の法尻との距離及び

東側斜面の高さとの関係は、十分に余裕があると考えられる。そうすると、 債務者が重油タンクの周辺斜面について解析モデルを作成しないこととし た点は不合理とはいえないというべきである。この点に関する債権者らの 主張は、採用することができない。

イ 本件原子炉施設が三波川帯にあるなどとする主張について

債権者らは、上記第3の6債権者らの主張欄(1)イのとおり主張する。

しかし,前提事実によれば,本件原子炉施設の周辺斜面の傾斜等については,その安定性評価の過程で考慮済みである。また,上記安定性評価の対象となる周辺斜面は,基礎地盤と同様に,表土や風化した岩盤を削り取るなどの対策を講じた後の,いわゆる堅硬な斜面について行われているところ(乙11),佐田岬半島が一般に著しい片理が発達するなど有数の地すべり発生地帯である旨の指摘が,佐田岬半島において上記と同様の対策を講じた後の堅硬な斜面について一般的に妥当することを窺わせる資料は見当たらない。この点に関する債権者らの主張は,採用することができない。

ウ 別件鑑定に基づく債権者らの主張について

債権者らは、上記第3の6債権者らの主張欄(1)ウのとおり主張し、これに沿う資料として別件鑑定に係る鑑定書(甲C196)を提出する。

しかし、別件鑑定に当たって使用された資料は一件記録中には見当たらない。また、上記鑑定書は、昭和51年12月30日付けで作成されたものであるから(甲C196)、別件鑑定が依拠した各種知見や調査結果の精度が現時点でも科学的技術的に見て、今なお当然に適用に耐え得るとは限らない。その上、別件鑑定にあっても、本件敷地については、大規模な地すべりが過去において発生したかどうかは不明であるとされており、債務者がした本件原子炉施設の周辺斜面の安定性評価の手法や結果(前提事実(1)イ)との比較において、少なくとも本件敷地に関する限り、別件鑑定

が指摘する地すべりの危険性は抽象的であるとの批判を免れない。してみると、別件鑑定における指摘が本件においても妥当するとまではいえないものというべく、この点に関する債権者らの主張は、採用することができない。

エ 検討すべき課題等との債権者らの主張について

債権者らは、上記第3の6債権者らの主張欄(1)エのとおり主張し、これに沿う資料(甲C324)を提出する。

しかし、一件記録によれば、債務者は、①深部ボーリング調査により、少なくとも深度約2000mまで続く結晶片岩の層が堅硬かつ緻密であること、②本件敷地の試掘坑内で、地質・地質構造を直接観察して試掘抗展開図を作成するなどした結果、節理につき、その長さが一般に短く、卓越した走向・傾斜が見られないこと、③本件敷地近傍及び本件敷地内に震源として考慮する活断層が存在しないこと、④本件原子炉施設の安全上重要な施設の直下に位置する断層について、地震活動などに伴い、地盤に永久変位を生じさせる可能性がないこと、以上の諸点を確認していることが認められる(乙11)。そうすると、上記資料(甲C324)は、その前提において相当でないものといわざるを得ない。

また、債権者らの主張するとおり、緑色片岩の原岩によって長期的に強度に著しい違いを生じることになるとしても(甲C324)、上記の強度の差が生じる時間的経過と本件原子炉施設の運用期間との関係が判然としないし、その結果生じる強度の差の具体的な内容も明らかでない。そうであれば、債務者において、ボーリング調査によって収集したボーリングコアの観察に当たり、緑色片岩の原岩を観察・記載しなかったからといって、直ちにこれを不合理であるとはいえない、この点に関する債権者らの主張は、採用することができない。

(3) 液状化現象による危険性について

ア 液状化の危険性に関する債権者らの主張について

債権者らは、上記第3の6債権者らの主張欄(2)アのとおり主張する。

しかし、審尋の全趣旨によると、①本件敷地の高さはT.P.+10mで あるところ、債務者による調査の結果、本件敷地の埋立部における地下水 位の平均は、海面の高さと同等のT.P.+0m程度であることが判明して いること、②本件原子炉の埋立部の土層におけるボーリング調査結果を基 に作成した粒径加積曲線からすれば、本件原子炉の埋立部の土は、粒径1 0㎜以上の礫を多く含み、かつ、粒径が比較的ばらついた砂(粒径0.0 75~2㎜の土粒子)からなっているといえること、③債務者による道路 における表面波探査の結果、埋立部のS波速度が工学的基盤面相当の30 0 m/秒以上であったこと,以上の事実が一応認められる。そうであれば, 地下水位は本件敷地の表面下10mの深さにあるものというべく、その状 態をもって地下水による飽和が生じているとはいい難いし,本件原子炉の 埋立部の土全体は、粒が大きいものから小さいものまで幅広い土粒子で構 成されているものというべく、液状化しやすい状態であるともいえない。 しかも、道路における表面波探査の結果(審尋の全趣旨)によれば、その 部分もよく締まった地盤であるものといってよい。してみると、債権者ら の主張は、その前提において当を得ないものというべく、採用することが できない。

イ 液状化の影響に関する債権者らの主張について

債権者らは、上記第3の6債権者らの主張欄(2)イのとおり主張する。

しかし、債務者は、新潟県中越沖地震の際には、東京電力柏崎刈羽原子力発電所において液状化現象が発生し、構内道路にも変状が生じたことを踏まえ、災害時におけるアクセスルートを確保する観点から、仮に埋立部において液状化現象が発生したとしても、主要構内道路の通行性が確保できるよう、埋立部を通らずに通行できるアクセスルートを確保する、大型

埋設物が地中を横断する箇所について、ジオテキスタイル補強工法による 耐震性向上工事を実施するなど、種々の対策を行っていることが認められ (乙111,112),これらの事実によれば、本件原子炉施設構内の主 要道路について、不等沈下によって通行に支障が生じシビアアクシデント 対策を実施することが不可能となるとまでいうことはできない。この点に 関する債権者らの主張は、採用することができない。

(4) 小括

以上によれば、地盤の危険性に関する新規制基準の内容に不合理な点はないし、本件原子炉施設における地盤の危険性(地すべり及び液状化)に関する債務者の評価が新規制基準に適合するとした原子力規制委員会の判断や、それへ至る過程に不合理な点はない。

- 7 制御棒挿入に係る危険性(争点7)について
 - (1) 判断の基礎となる事実
 - ア 新規制基準等の内容について

新規制基準においては、設計基準対象施設(設置許可基準規則2条2項7号)のうち、上記4(1)ア(ア)に列挙された施設や設備を耐震重要度分類Sクラスに分類しているところ、制御棒挿入性は、地震により発生するおそれがある事象に対して、原子炉を停止し、炉心を冷却するために必要な機能であるといえるから、耐震重要度分類としてSクラスに相当し、基準地震動Ssに対する耐震安全性の求めに応えるものでなければならないものというべきである。

イ 債務者による評価について

債務者が制御棒挿入性について行った耐震安全性評価の内容は、次のと おりである(乙50,144,審尋の全趣旨)。

(ア) 制御棒クラスタ挿入時間における評価基準値を2.5秒(運転時の異常な過渡変化及び設計基準事故を想定した解析評価の際に条件として用

いた原子炉内への挿入時間)と設定した。

(イ) 基準地震動Ss-1の地震動を前提に、制御棒クラスタが落下を開始する時刻を特定せず(各落下開始時刻における地震加速度が原子炉トリップ信号に係る設定値を超えるかどうかは考慮せず),落下開始時刻の想定を0.1秒ずつ(挿入時間が大きくなる時間帯については0.01秒ずつ)変更しながら、各時刻で落下を開始した場合(全部で約1200ケース),すなわち、P波を計測して挿入を開始してから完了するまでの間にS波が到達するケースはもちろんのこと、S波到達後に挿入を開始するケースも含め、地震動が継続している期間における全てのケースについて挿入時間を算定した。

その結果、最も挿入時間が長いのは2.39秒であった。

- (ウ) 債務者は、他の基準地震動Ssにおいても同様に挿入時間を算定したところ、上記(イ)の数値が最も厳しい数値であったことから、債務者は2.39秒をもって評価値に採用した。
- (エ) 債務者は、上記(ア)ないし(ウ)の過程を経て、本件原子炉については、制御棒が、少なくとも挿入時間の評価基準値である2.5秒以内に安全に挿入されることを確認した。
- (2) 耐震重要度分類をめぐる新規制基準の内容が合理的であることは上記4で 説示したとおりであるところ、上記(1)で認定した事実によれば、制御棒の挿 入性については、基準地震動Ssに対する耐震安全性を備えている旨の債務 者の評価が合理性を欠くものとはいえない。
- (3) 債権者らの主張について
 - ア 債権者らは、上記第3の7債権者らの主張欄(1)のとおり主張する。そして、審尋の全趣旨によれば、債務者は、制御棒クラスタ挿入時間の評価において、地震時に追加で生じる制御棒に生じる摩擦力(地震外力による抗力)としては水平動のみを考慮し、鉛直動についてはこれを考慮していな

いことが認められる。

しかし、制御棒挿入経路の機器が制御棒との関係で相対的に上方に移動 する場合に、摩擦力が増加して制御棒挿入を遅らせる効果が生じるのであ れば、反対に機器が相対的に下方に移動する場合には、摩擦力との関係で は制御棒挿入を早める効果が生じるとするのは合理的であると考えられる し、制御棒の相対的移動距離との関係においても、同様に上下方向の揺れ が交互に作用する場合にはそれぞれの効果が相殺されると考えるのが自然 である。そのことは、ダッシュポット効果における冷却材の流体抵抗につ いても同様に当てはまるものと考えられる。なお、本件原子炉では、制御 棒案内管の下部(制御棒挿入性評価の対象となる全ストロークの85%位 置付近)において管径をあえて小さくして水が上方にスムーズに流れない ようにし、内部の水によるダッシュポット効果により制御棒を減速させ、 制御棒落下の衝撃を緩和する構造としていることが窺えるから(審尋の全 趣旨), ダッシュポット効果の発生により制御棒の落下速度が減少するこ とになるけれども、上記事実によれば、そのような効果が発生するのは制 御棒挿入に係る全ストロークの85%の挿入がほぼ完了した時点以降とい わざるを得ないから、制御棒クラスタの挿入時間の評価に与える影響はほ とんどないものといってよい。

また、財団法人原子力工学試験センターが昭和59年度から昭和60年度にかけて行った、大型高性能振動台により実機規模の試験体を用いて実際に水平・鉛直同時加振を行うことで制御棒挿入の遅れ時間を測定した試験によれば、地震動による制御棒の挿入遅れは、水平動の影響が支配的であることを示唆する結果が得られているというのである(乙284)。

してみると、鉛直動によっては制御棒落下開始から制御棒落下完了まで の時間に遅れが生じないものと考えられるものというべく、制御棒クラス タ挿入時間の評価に当たり、地震動の影響として鉛直動を考慮の対象にし なかったことが不合理であるとはいえない。この点に関する債権者らの主 張は、採用することができない。

イ 債権者らは、上記第3の7債権者らの主張欄(2)のとおり主張する。

しかし、債務者による制御棒クラスタ挿入時間の評価は、本件原子炉について策定された基準地震動Ssを用いて行われているのであって(上記(1))、エルセントロ波等の一般の耐震評価に用いられる代表的な地震波が用いられていることを窺わせる資料は見当たらない。債権者らの主張は、その前提を欠いており、失当である。

しかし、ストレステストは、平成23年7月11日付けで内閣官房長官らが作成した「我が国原子力発電所の安全性の確認について(ストレステストを参考にした安全評価の導入等)」(乙145)において導入が公表され、同月22日付けで原子力安全・保安院から各電気事業者等に対してその実施が指示されたものであって、新規制基準が施行された後の原子炉設置許可等の審査にあたって、その実施が法令上要求されているものではない。

また、仮に、上記主張を、新規制基準が基準地震動Ssを超える揺れに対する制御棒挿入性をストレステストを通じて確認するよう求めていない点で不合理である旨のものと善解したとしても、基準地震動Ssを超える揺れに対しても制御棒挿入性の面における安全性を要求することは、新規制基準が、基準地震動をもって設計基準対象施設が備えるべき耐震性能を画する基準としていること(設置許可基準規則4条)と相容れないし、社会通念上そのような性能まで要求されているとも考え難い。いずれにしても、債権者らの上記主張は、採用の限りではない。

(4) 小括

以上によれば、制御棒クラスタ挿入時間の評価のありようにつき新規制基準の内容に不合理な点はないし、本件原子炉における制御棒クラスタ挿入時間に関する評価を含む債務者による本件原子炉施設の耐震安全性評価が新規制基準に適合するとした原子力規制委員会の判断や、それへ至る過程に不合理な点はない。

8 基準津波策定の合理性(争点8)について

(1) 新規制基準の合理性について

新規制基準について、その策定に至る手続や実体において合理性を失わせるほどの瑕疵があるとまでいえないことは上記2で検討したとおりである。

そして、前提事実で見た津波に関する新規制基準及び新規制基準を前提とした審査に用いるべき津波ガイドの各内容によれば、新規制基準における基準津波の考え方は、最新の科学的・技術的知見を踏まえ、調査手法の適用条件や精度等に配慮した信頼に足りる調査を通じて、波源海域から敷地周辺までの海底地形、地質構造及び地震活動性等の地震学的見地から想定することが適切なものを策定することとするが、その策定に当たっては、津波の発生要因によって検討対象となる津波を複数選定し、不確かさを考慮して数値解析を実施することによって、設計基準対象施設の供用中に当該設計基準対象施設に大きな影響を及ぼすおそれがある津波を策定し、これに対する対策の最低限の基準とするというものであって、このような考え方は、原子炉等規制法の趣旨(上記3(1))に沿うものであって、これまた何ら不合理な点はない。

また、基準津波の策定方針は、上記のとおり、最新の科学的・技術的知見を踏まえ、津波の発生要因ごとに考慮するものとし、中でも、プレート間地震については、津波波源の考慮に当たり、国内のみならず世界で起きた大規模な津波事例における津波の発生機構及びテクトニクス的背景の類似性をも

考慮するなどし、もって、その規模の想定において万全を期することとしているものというべきである。このような新規制基準における基準津波の策定 方針それ自体にも何ら不合理な点はないものというべきである。

- (2) プレート間地震による津波(南海トラフから南西諸島海溝までの破壊伝播の想定の要否)について
 - ア 債権者らは、上記第3の8債権者らの主張欄(1)のとおり主張する。
 - イ 債務者は、プレート境界付近に想定される地震に伴う津波につき、①内閣府検討会の南海トラフの巨大地震に伴う津波(Mw9.1)及び②南海トラフから南西諸島までの領域を対象とした津波の2つを対象津波とし、そのそれぞれについて、前提事実(13)イ(イ)a(b)のとおり津波波源を設定した。ところで、津波ガイドは、プレート境界付近に想定される地震(プレート間地震)に起因する津波の津波波源の設定に対する審査のありようとして、次のとおり定めていることが認められる(乙156)。
 - (ア) プレート間地震については、地震発生域の深さの下限から海溝軸まで が震源域となる地震(断層幅が飽和するような地震)を考慮しているこ とを確認する。
 - (イ) その際, 地震発生域の下限の深さとしては, 地震による地殻上下変動 を考慮し, 対象施設の敷地における津波の影響が最大となるように設定 されていることを確認する。
 - (ウ) 対象海域における既往地震の発生位置や規模を参考に、プレート境界 面の領域区分(本項において、以下「セグメント」という。)を設定し、 セグメントの組合せにより、津波波源の位置、面積、規模を設定してい ることを確認する。
 - (エ) 上記(ウ)のセグメントの組合せに応じた津波波源の総面積に対し、地震の規模に関するスケーリング則に基づいてモーメントマグニチュード及び平均すべり量を設定していることを確認する。その際、剛性率の異な

るセグメントを組み合わせる場合には、剛性率の違いを考慮して適切に モーメントマグニチュード及び平均すべり量を設定していることを確認 する。

- (オ) モーメントマグニチュードの大きさに応じて津波波源のすべり分布の 不均一性を考慮して段階的にすべり量を設定していることを確認する。 その際、最大すべりが海溝付近に設定されていることを確認する。
- (カ) Mw9クラスの巨大津波の場合には、破壊様式(破壊伝播方向、破壊 伝播速度)の影響が考慮されていることを確認する。
- (キ) 海溝付近における津波地震の発生を考慮していることを確認する。
- (ク) 海溝付近にプレート境界から分岐した断層(分岐断層) の存在が否定できない場合には、プレート間地震との連動を考慮していることを確認する。

また、津波ガイドには、上記の定めに続けて、「解説」欄を設け、「プレート間地震に起因する津波発生事例」、「プレート間地震に起因する津波の波源設定の対象領域の例示」、「2011年東北地方太平洋沖地震津波の波源モデルの分析」及び「プレート間地震に起因する津波波源の設定例」と題してコメントが付されているところ、このうち「プレート間地震に起因する津波の波源設定の対象領域の例示」及び「プレート間地震に起因する津波の波源設定の対象領域の例示」及び「プレート間地震に起因する津波波源の設定例」の内容は、次のとおりである(乙156)。

①「プレート間地震に起因する津波の波源設定の対象領域の例示」について

日本周辺海域における既往津波の発生の有無に捉われることなく,日本周辺のプレート構造及び国内外で発生したMw9クラスの巨大地震による津波を考慮すると,プレート間地震に起因する津波波源の設定は,(中略)3つの領域が対象となる。各領域範囲を津波波源とした場合の地震規模を以下に示す。(地震規模は参考値である。)

- ・ 千島海溝から日本海溝沿いの領域(最大Mw9.6程度)
- 伊豆・小笠原海溝沿いの領域(最大Mw9.2程度)
- ・ 南海トラフから南西諸島海溝沿いの領域(最大Mw9.6程度)
- ②「プレート間地震に起因する津波波源の設定例」について

内閣府の「南海トラフの巨大地震モデル検討会」では、東北地方太平 洋沖地震及び世界の巨大地震の解析事例の調査に基づいて、駿河湾から 日向灘までの範囲を対象とした南海トラフにおける最大クラスの津波波 源モデル(Mw9.1)を設定している。

この津波波源モデルは、以下の特徴を有する。

- ・ 平均すべり量は、波源全体の面積に対し地震の規模に関するスケー リング則に基づき設定されている。
- ・ すべり分布の不均一性として、海溝付近に大すべり域(平均すべり 量の2倍を設定する領域)及び超大すべり域(平均すべり量の4倍を 設定する領域)が考慮されている。
- ・ 分岐断層が活動するケースや破壊開始点,破壊伝播速度等の影響を 考慮した場合も検討されている。

ただし、この海域のテクトニクス的背景は2003年スマトラ沖地震 と類似していることから、津波波源の領域は、(中略)南海トラフから 南西諸島海溝まで含めた領域が対象となる。

以上のとおり認められる。

上記認定事実によれば、プレート間地震に起因する津波の津波波源の設定に関する審査のありようは、上記(ア)ないし(ク)のとおりであるところ、上記(ウ)及び(エ)によれば、津波波源の設定は、対象海域においてセグメントを設定し、その組合せによることがもともと予定されているものと解するのが相当である。そして、上記(ウ)及び(エ)の定めに加え、「解説」欄における上記①及び②のコメントの文言やそこから窺える内容を総合すると、(a)上

記(ウ)においてセグメントを設定する対象海域としては、上記①に記載され ている3つの領域を対象とするのが相当であること,(b)内閣府検討会が提 示した南海トラフの巨大地震の津波断層モデルは、その有する特徴のうち、 「平均すべり量が波源全体の面積に対し地震の規模に関するスケーリング 則に基づき設定されている」という点において上記(に)に、「すべり分布の 不均一性として、海溝付近に大すべり域及び超大すべり域が考慮されてい る」という点において上記分に、「分岐断層が活動するケースや破壊開始 点、破壊伝播速度等の影響を考慮した場合も検討されている」という点で 上記(力)及び(ク)に、それぞれ相応する内容を備えていること、(c)もっとも、 上記モデルは、南海トラフのみをその対象領域とするものであるところ、 この海域のテクトニクス的背景に照らすと、津波ガイドが想定する対象領 域は、あくまでも上記①にいう「南海トラフから南西諸島海溝沿いの領域」 とすべきであること,以上の諸点を指摘するものと解するのが合理的であ る。とはいえ、上記①で掲げられている地震規模は「参考値」である旨明 記されていること、津波ガイドが「本ガイドに記載されている手法等以外 の手法等であっても、その妥当性が適切に示された場合には、その手法等 を用いることは妨げない」とか、「本ガイドは、今後の新たな知見と経験 の蓄積に応じて、それらを適切に反映するよう見直していくものとする! との方針を掲げていること(乙156)も踏まえると、津波ガイドの定め が、事業者による詳細な調査や、津波ガイド策定後の地震学的、津波学的 知見の蓄積等にかかわらず、必ず、南海トラフから南西諸島沿いの領域の 全部について破壊伝播することを前提とし、かつ、その地震規模をMw9. 6と設定することを要求する趣旨であるとまで解することは困難である。

そうであれば、債務者において、プレート境界付近に想定される地震に 伴う津波の津波波源を設定するに当たり、その津波波源の設定が海域のテ クトニクス的背景を踏まえたものであって妥当性が適切に示されているも のである限り、南海トラフから南西諸島沿いの領域の全部を通じて、当該 領域内に想定されるべきセグメントを全て組み合わせて(すなわち、当該 領域全部について破壊伝播することを前提として)おらず、その地震規模 をMw 9. 6に設定しなかったからといって、これを津波ガイドに違反す る不合理なものとまではいえない。

ウ 津波ガイドのいう審査のありように照らすと、対象海域におけるセグメントの設定は、既往地震の発生位置や規模を参考にすべきであり、かつ、津波波源の位置、面積、規模の設定は、複数のセグメントの組合せによるべきことが求められているところ、上記認定事実によれば、債務者は、「南海トラフから南西諸島までの領域を対象とした津波」を対象津波とした場合の津波波源の設定に当たり、南海トラフ、琉球海溝北部、琉球海溝中部及び琉球海溝南部の合計4つのセグメントに区分し、これらのセグメントのうち、琉球海溝北部及び琉球海溝中部の2つのセグメントを組み合わせて津波波源を設定したというのである。

債務者による上記津波波源の設定のうち、対象領域を上記4つのセグメントに区分した点については、地震地体構造区分に関する知見を参考にしたことが認められ(乙11、161)、合理的であるといってよい。

もちろん,津波ガイドにおける上記①のコメント内容に照らすと,南海トラフから琉球海溝南部までの全てのセグメントを組み合わせるのがより安全側に配慮することになるのはいうまでもない。それにもかかわらず、債務者は、津波波源の設定に当たり、南海トラフを上記組合せの対象に加えなかったというのであるから、そのような設定には相応の合理性が求められるものといわねばならない。

(ア) 地震履歴について

南海トラフにあっては、各種の知見から、過去5000年間に、1707年宝永地震(M8.6)などの巨大地震が認められ、その発生間隔は、300~600年と考えられること、約5000年間の地質記録において、九州パラオ海嶺までの南海トラフ全域を波源域とする地震が発生したことを認めるに足りる資料は見当たらないこと、過去6000年間を通して、平地の上まで巨礫を運ぶような規模の津波はなかった可能性があること、南海トラフにおける地震の応力降下量は、超巨大地震発生地域における地震の応力降下量に比べて小さく、超巨大地震が発生する可能性が低いこと、以上の事情を指摘することができるのに対し、琉球海溝にあっては、南部において1771年八重山地震(M8.5)が確認されている上、先島諸島では、2600年前以降、150~400年間隔で繰り返し地震が発生した痕跡(津波石)が認められること、中部において明治喜界島地震(M8.0)が確認されているものの、奄美・沖縄諸島では、規模の小さな石が認められるのみであり、2300年前以降に巨大津波は発生していないと考えられること

(イ) テクトニクス等の情報について

南海トラフにあっては、GPS観測データを用いたすべり欠損分布において、年間2cm上のすべり欠損が認められること、背弧海盆がないこと、以上の事情を指摘することができるのに対し、琉球海溝にあっては、北部、中部、南部に共通して、GPS観測データから、陸側プレートの変位ベクトルは海側プレートに向いており、大規模な固着は想定されないこと、北部及び中部においてGPS観測データを用いたすべり欠損分布において、年間2cm以上のすべり欠損は認められないこと、中部において海底GPS観測データにより固着域が確認されているが、最深部は12~14kmとされ、南海トラフと比べて浅いと考えられること、拡大

している背弧海盆(沖縄トラフ)があること 以上の事実が一応認められる。

上記(ア)及び(イ)の事実を総合すると、①各セグメント内における最大規模の歴史地震は、南海トラフではMw8.5クラス、琉球海溝北部・中部ではMw8.0クラス、琉球海溝南部ではMw8.5クラスであること、②各セグメントには、世界の超巨大地震発生地域との比較において、世界の超巨大地震発生地域との比較において、世界の超巨大地震発生地域レベルの固着域はなく、各領域内における最大規模の歴史地震と整合的な固着域が想定されること、以上2点を想定することには相応の合理性が認められるというべきである。

また、各セグメント間の構造的境界についてみると、次のとおりの知見 の存在が一応認められる(乙161、審尋の全趣旨)。

- (ウ) 南海トラフと琉球海溝の構造的境界について、九州・パラオ海嶺付近を境に、(a)構造探査等の結果から、海洋プレート浅部(地殻)の厚さ等の構造が異なる旨を指摘する知見や、(b)プレートの年代が異なる旨を指摘する知見
- (エ) 琉球地域の陸側プレートの構造的境界について,(a)横ずれ断層(北から順に,トカラ横ずれ断層及び宮古横ずれ断層)により地質学的に3分割される旨を指摘する知見や,(b)測地学的検討によると,上記と同様に3つのブロックに分かれる旨を指摘する知見
- (オ) 琉球海溝内の構造的境界について、(a)稍深発地震の分布から、海洋プレートの傾斜が琉球海溝北部は急であるのに対し、南部は緩やかであるという違いがある旨を指摘する知見や、(b)琉球海溝北部では海洋プレートの年代が古いのに対し、南部では新しい旨を指摘する知見

以上の知見の存在が一応認められる。

上記(ア)及び(イ)のとおり各セグメントにおける固着域の分析結果を踏まえ、各セグメントの構造的境界をめぐる上記(ウ)ないし(オ)の知見を総合してセグ

メントの境界を超えて固着域が破壊する可能性についてみると,次のように考えることについては相応の合理性があるというべきである。

① 南海トラフ及び琉球海溝北部間

南海トラフは、固着域が超巨大地震を発生させるような規模ではないし、すべり欠損が顕著に小さくなること、両者の間に構造的境界(九州・パラオ海嶺)が認められることから、津波波源の設定に当たり、両者の組合せを要するほどには両者の境界を超えて固着域が破壊する可能性は想定し難い。

② 琉球海溝北部及び琉球海溝中部間

両セグメントのいずれにおいても固着が小規模であること,両者の間に構造的境界(トカラ横ずれ断層)が認められることから,津波波源の設定に当たり,両者の組合せを要するほどには両者の境界を超えて固着域が破壊する可能性は想定し難い。

③ 琉球海溝中部及び琉球海溝南部間

琉球海溝南部の固着域は超巨大地震を発生させるような規模ではないこと,琉球海溝中部においては,2300年の間,巨大地震が発生していないこと,両者の間に構造的境界(宮古横ずれ断層)が認められることから,津波波源の設定に当たり,両者の組合せを要するほどには両者の境界を超えて固着域が破壊する可能性は想定し難い。

上記4つのセグメント相互間について互いの境界を超えて固着域が破壊する可能性は上記のとおりであるにもかかわらず、債務者は、実際に行った津波波源の設定に当たり、琉球海溝北部と琉球海溝中部を組み合わせたというのである。そのような想定をするのであれば、少なくとも、本件敷地に最も近い南海トラフも同様に組み合わせるのが相当であるかのように見える。しかし、上記分析結果に照らして、南海トラフと琉球海溝北部との境界、琉球海溝北部と琉球海溝中部との境界を仔細に比較すると、前者

の構造的境界が海嶺であるのに対し、後者は横ずれ断層にとどまること、 固着域の規模、年間すべり欠損の態様、背弧海盆の有無等において、前者 にあっては隣接するセグメント間でその差が大きいのに対し、後者にあっ ては隣接するセグメント間でむしろ共通していることが指摘できるのであ って、セグメント間の境界に見られる差異に徴すると、琉球海溝北部と琉 球海溝中部を組み合わせる一方で、南海トラフを隣接するセグメントと組 み合わせなかったことには相応の合理性があるものと認められる。

エ 債権者らの上記主張中には、内閣府検討会が、南海トラフの巨大地震の 津波断層モデルを提言した際、同提言に至る過程が一般的な防災対策の検 討を念頭に置いたものであり、「より安全性に配慮する必要のある個別施 設については、個別の設計基準等に基づいた津波の推計が改めて必要であ る」旨述べている部分を指摘して、あたかも上記モデルが津波に対する原 子力発電所の安全性を評価するには十分でないかのような主張をする部分 がある。

しかし、南海トラフの巨大地震の津波断層モデルが想定する地震規模は Mw9.1であるところ、津波ガイド中上記モデルを紹介した部分においてそのような地震規模の想定が過小である旨の指摘は見当たらない。また、上記モデルは、内閣府検討会において、東北地方太平洋沖地震の教訓を踏まえた、津波地震や広域破壊メカニズムなど、あらゆる可能性を考慮した最大クラスのものとして推計したものであって、発生頻度は極めて低いものの、発生すれば甚大な被害をもたらす最大クラスの津波に相当するものと評価されているのであって(乙157,273)、南海トラフの巨大地震の津波断層モデルそのものが過小な想定であるとはいえない。さらに、債務者は、内閣府検討会による南海トラフの巨大地震に伴う津波の推計値をそのまま流用したわけではなく、上記提言に係る津波断層モデルケースを用いて自ら津波波源を設定し、数値シミュレーションを行ったのである

から(前提事実(I3)イ),債務者は、あくまでも新規制基準を踏まえた津波 の推計を改めて行ったものといってよい。この点に関する債権者らの主張 は、採用することができない。

オ また、債権者らは、その主張に沿う資料として、津波想定につき、例えば1960年チリ地震(M9.5)や1964年アラスカ地震(M9.2)等世界各地の類似事象を用いるよう推奨する旨のIAEAの技術文書(甲D294)の存在を指摘するけれども、同文書は、福島第一原発で行うべきであった津波想定について、日本海溝の最大地震規模の想定の在り方について検証したものであって、同文書において比較検討の対象とされた上記類似事象が「南海トラフから南西諸島海溝沿いの領域」にそのまま妥当するとは限らない。

このほか、債権者らは、「南海トラフから南西諸島沿いの領域」の全てのセグメントに破壊伝播を来す地震が起きる可能性を示唆する複数の知見の存在を指摘するけれども(甲D142,D146)、これらの知見は、上記説示に係る津波ガイドの解釈とは必ずしも整合しない内容を含むものというほかはないところ、関係する学界や実務において上記各知見がどのように位置づけられているか、一件記録からは判然としない。

したがって、上記各資料や知見があるからといって、債務者が「南海トラフから南西諸島海溝沿いの領域」に設定すべきセグメントの全部を組み合わせて津波波源を設定しなかったことが直ちに不合理であるということにはならない。この点に関する債権者らの主張は、採用することができない。

カ このほか、債権者らは、プレート間地震に起因する津波波源の設定においては、スケーリング則のばらつきを考慮して、「Mw9.6」を想定すべきである旨主張する。しかし、津波ガイドによれば、モーメントマグニチュードは、平均すべり量とともに、セグメントの組合せに応じた津波波

源の総面積に対し、地震の規模に関するスケーリング則に基づいて設定さ れていることが求められており(乙156)、そのことには不合理な点は 何ら見当たらないから、スケーリング則を適用した結果のいかんにかかわ らず、いわば既定値として「Mw9.6」の設定を要求することは、セグ メントの組合せも、スケーリング則を当てはめた結果も、およそ考慮の埒 外に置くことにほかならず、それこそ津波ガイドの趣旨に沿わないことに なる。また、スケーリング則は、それがどのようなものであれ、過去の地 震で得らえたデータの解析結果に基づく経験式にほかならないところ, 当 該経験式が内包するばらつきなり不確かさなりを改めて考慮しないからと いって、その結果得られた地震動評価が直ちに合理性を欠くとはいえない ことは上記3で説示したとおりである。もとより、債権者らが主張する 「Mw9. 6」は、津波ガイド上も「南海トラフから南西諸島沿いの領域」 における地震規模の参考値であるとの指摘にとどまるし(乙156)、債 務者が選んだ対象津波の基となる南海トラフの巨大地震において内閣府検 討会が設定した津波断層モデル (Mw9.1) は、Mw9クラスの巨大地 震の中でも最大級のものであるというのであるから、相応の不確かさを考 慮しているといえる(乙157)。したがって、債務者がプレート間地震 に起因する津波波源の設定において、その地震規模を「Mw9.6」に設 定しなかったことが、直ちにスケーリング則のばらつきを考慮していない 点で過小評価であって合理性を欠くということはできない。この点に関す る債権者らの主張は、採用することができない。

- (3) 海域の活断層に想定される地震に伴う津波について
 - ア 歴史記録の考慮を除外したことについて
 - 一件記録によれば、津波ガイドには、審査の在り方の一つとして、①基 準津波を選定する際には、その規模が、敷地周辺における(中略)歴史記 録等から推定される津波の規模を超えていることを確認すること、②歴史

記録については、震源像が明らかにできない場合であっても規模が大きかったと考えられるものについて十分に考慮されていること、以上2点を確認するものとされている(乙156)。そして、債務者は、慶長豊後地震の記録を指摘したものの、同地震による津波の被害は別府湾沿岸のみに限定されており、本件敷地周辺に被害が発生したという記録は見当たらないとしていることが認められる(乙11)。そして、債権者らは、上記第3の8債権者らの主張欄(2)アのとおり主張し、これに沿う資料として、公益財団法人深田地質研究所都司嘉宣作成の意見書(甲C100。以下「都司意見書」という。)を提出するところ、都司意見書中には、本件敷地周辺に達した慶長豊後地震に伴う津波高さが6ないし10mであったことを示唆する部分がある。

しかし、都司意見書において指摘・紹介されている古文書によっても、 慶長豊後地震に伴う津波被害に関する記録は全て別府湾周辺の地域に関す るものに限られ、本件敷地を含む現在の愛媛県側の地域における津波被害 を伝える内容のものは見当たらない(しかも、愛媛県側の地域における津 波被害を伝える内容のものが見当たらないという限度では、債務者による 文献調査の結果にも沿うものである。)。むしろ、上記古文書中、愛媛県 側の被害として、いずれも地震の揺れによるとみられる建物の倒壊等を伝 える内容の記録が散見されることとの対比からすれば(甲C100)、愛 媛県側では地震の揺れによる被害ほどには津波被害が目立たなかったと考 える余地すらある。

その上、別府湾沿岸地域の津波に最も大きな影響を及ぼすと考えられる 別府-万年山断層帯が正断層であるのに対し、本件敷地前面の伊予灘に位 置する中央構造線断層帯は横ずれ断層であることが窺え(乙33)、一件 記録中にこれを覆すに足りる資料は見当たらない。そうすると、上下方向 のずれが大きい正断層である前者に比べ、上下方向のずれが小さい横ずれ 断層である後者の方が、その活動に伴う津波の大きさが小さくなると考えるのが自然であるから、慶長豊後地震の震央からみて本件敷地周辺の方が別府湾周辺の地域よりも明らかに遠位にあったこと(甲C100)も相まって、別府湾周辺の地域において記録されたものと同程度の津波が本件敷地周辺に達したものと直ちに想定することには無理があるといわねばならない。

してみると,都司意見書中上記部分は採用することができず,それに依 拠する債権者らの主張は,その他の点も含め,採用することができない。

- イ 債務者の津波断層モデル設定の合理性について
 - (ア) 債権者らは、上記第3の8債権者らの主張欄(2)イ(ア)のとおり主張する。 しかし、債務者がすべり量が飽和するとの知見を採用したことが不合 理であるとはいえないことは、既に上記3において説示したとおりであ る。そうであれば、債務者が津波断層モデルを設定するに当たり、すべ り量が飽和することを前提としたことも不合理であるとはいえないとい うに帰する。この点に関する債権者らの主張は、採用することができな い。
 - (イ) 債権者らは、上記第3の8債権者らの主張欄(2)イ(イ)前段のとおり主張 する。

しかし、中央構造線の長期評価(乙33)が、想定される地震規模の計算に当たり、「石鎚山脈北縁西部一伊予灘 川上断層一伊予灘西部断層」における「ずれの量」の最大値を「2~7m」としたのは、父尾断層で求められた地表のずれの量(岡田・堤(1997))に基づく「鳴門断層及び鳴門南断層 - 石鎚断層」の「ずれの量」を用いて仮定した結果であって、「石鎚山脈北縁西部一伊予灘 川上断層一伊予灘西部 断層」の「ずれの量」を実際に調査した結果ではないところ、断層長さ80㎞で平均すべり量が約3mで飽和する旨の壇ほか(2011)、地表最大変位量

は平均すべり量の $2 \sim 3$ 倍に収まり、断層長さ約 $1 \circ 0$ kmで地表最大変位量が約 $1 \circ 0$ mで飽和する旨の室谷ほか(2010)、四国西部の中央構造線断層帯における 1 回当たりのすべり量 $2 \sim 4$ mを確認した旨の堤・後藤(2006)の各知見に照らすと、中央構造線の長期評価の上記想定そのものが既にかなり保守的な想定となっていると評価することが可能である。また、壇ほか(2011)の元データでも平均すべり量が約 $6 \sim 7$ m程度のデータが $3 \sim 1$ つ見受けられ、室谷ほか(2009)や室谷ほか(2010)が依拠するStirling et al. (2002)の元データに平均すべり量 6 mを超える事例が見られる程度である。

してみると、債務者において、すべり量が飽和するとの知見に依拠したことが不合理であるとはいえないこと(上記(ア))も踏まえれば、債務者が一様すべり量モデルにおいてすべり量を7~8mと設定したことが不合理であるとまではいえない。この点に関する債権者らの主張は、採用することができない。

(ウ) 債権者らは、上記第3の8債権者らの主張欄(2)イ後段のとおり主張する。そして、債務者が想定した不均質モデルの具体的な内容が次のとおりであったこと、もっとも、不均質モデルについてした数値シミュレーションの結果、一様すべり量モデルによる数値シミュレーションの方がより厳しい評価となったとして、不均質モデルは基準津波策定において採用されるに至らなかったこと、以上の事実が認められる(甲D471、乙11)。

a ケース 0

地震発生層($2\sim15\,\mathrm{km}$)につき、平均すべり量 $2.67\,\mathrm{m}$,第 1 アスペリティすべり量 $5.96\,\mathrm{m}$,第 2 アスペリティすべり量 $3.65\,\mathrm{m}$,背景領域すべり量 $1.64\,\mathrm{m}$ とし,断層上部($2\,\mathrm{km}$ 以浅)につき、アスペリティ上部すべり量 $5.33\,\mathrm{m}$,背景領域上部すべり量 $1.64\,\mathrm{m}$

64mとしたケースである。

b ケース1

ケース 0 を基礎に、アスペリティ上部・背景領域上部のいずれについても、断層平均すべり量の 2 倍のすべり量を設定したものであり、地震発生層($2\sim15$ km)につき、平均すべり量 2.67 m、第 1 アスペリティすべり量 5.96 m、第 2 アスペリティすべり量 3.65 m、背景領域すべり量 1.64 mとし、断層上部(2 km以浅)につき、アスペリティ上部すべり量 5.3 mとしたケースである。

c ケース2

ケース1を基礎に、松島ほか(2010)における内陸地殻内地震の断層上部のすべり量を参考とし、断層上部のすべり量が平均すべり量の2~3倍程度となるよう、アスペリティ上部は断層平均すべり量の3倍のすべり量を設定したものであり、地震発生層(2~15km)につき、平均すべり量2.67m、第1アスペリティすべり量5.96m、第2アスペリティすべり量3.65m、背景領域すべり量1.64mとし、断層上部(2km以浅)につき、アスペリティ上部すべり量8.00m、背景領域上部すべり量5.33mとしたケースである。

そもそも、債務者が断層モデル解析で地震動評価を行うに当たって基本として用いるスケーリング則として壇ほか(2011)を採用したのは、解析に必要な各種パラメータのうち、地震モーメント、平均応力降下量及びアスペリティの応力降下量の3つのパラメータを一連で設定する考え方を提示している手法が壇ほか(2011)以外に見当たらないこと、壇ほか(2011)が異なる長さの断層に対して適用可能と考えられたこと、壇ほか(2011)が、地表最大変位量、震源断層及び平均すべり量の相関関係において、室谷ほか(2010)の知見を整合的に説明できること、以上の諸点を

考慮した結果であることが認められる(乙31)。それに加えて、壇ほか(2011)によることが過小評価につながる旨明快に指摘した資料も見当たらないことにも照らすと、債務者が上記のとおりスケーリング則を採用した経緯は合理的であるというべきである。そうであるところ、上記認定事実によれば、海域の活断層に想定される地震に伴う津波について、債務者が津波波源の断層モデルとして一様すべり量モデルとは別に、不均質モデルを設定して数値シミュレーションを試みることになったのは、原子力規制委員会において、債務者が断層モデル解析で地震動評価を行う際の基本となるスケーリング則として壇ほか(2011)に基づいていることを踏まえ、債務者に対し、津波波源の断層モデルの設定にも壇ほか(2011)を適用し、もって、上記地震動評価と平仄を合わせようとしたことに応えた結果であるというのである。

ところで、壇ほか(2011)は、長大の横ずれ断層における強震動予測に供される断層パラメータを算定することを可能にするために平均応力降下量及びアスペリティの応力降下量を先験的に定めることを目的としており、その成果として、震源断層面積を設定するだけで地震モーメントの算出を可能ならしめていることが認められる(甲D106)。そして、改訂レシピによれば、地震モーメントを与えることによって、震源断層全体の平均すべり量を一義的に求めることができるというのである(乙173)。実際に、債務者は、断層モデル解析による地震動評価に当たり、①対象となる震源断層面積から壇ほか(2011)を適用して地震モーメントを求め、これを改訂レシピに示されている地震モーメントと平均すべり量との関係式に代入することによって、当該震源断層の平均すべり量を算出していること、②その結果、130kmケースの基本震源モデルにつき、敷地前面海域の断層群及び伊予セグメントのそれぞれにつき、平均すべり量が2.67m、第1アスペリティの平均すべり量が5.9

6 m, 第2アスペリティの平均すべり量が3.66 m, 背景領域の平均すべり量が1.64 mと求まったこと,以上の事実が認められる(乙11)。また,130 kmケースは,その海域部分につき,本件海域部断層群のうちの「敷地前面海域の断層群+伊予セグメント」にほぼ重なり合っているものといって差し支えない(乙11)。

そうであれば、不均質モデルの基本となる「ケース0」における断層全体、第1アスペリティ、第2アスペリティ及び背景領域の各平均すべり量は、130kmケースに壇ほか(2011)を適用することによって求まる数値であるものというほかはないから、これをもって債務者が不均質モデルの設定に当たって意図的に引き下げた数値であるなどと認める余地はない。また、壇ほか(2011)は、平均すべり量は、震源断層長さが約80kmを超えるとほぼ300cmで一定となる旨指摘しているが(甲D106)、さればといって、平均すべり量の限界を決定論的に300cmである旨指摘しているわけではないし、上記指摘を過去の地震から得られたデータを用いて検証してもある程度のばらつきがあることが窺えるのであるから(甲D106)、130kmケースや「ケース0」における平均すべり量が3mを下回る2.67mであったからといって、そのことから直ちに壇ほか(2011)の妥当性が損なわれると即断することも相当ではない。

なお、不均質モデルにおける壇ほか(2011)に基づく平均すべり量は、 国土交通省等による「日本海における大規模地震に関する調査検討会報告書」が設定したそれ(6 m)よりも小さい(甲D472の1・2)。 同報告書は、(a)壇ほか(2011)とは別のスケーリング則をもとに「Mw7. 4以上で平均すべり量がほぼ3mで飽和する」旨の相関関係を導きつつ、(b)1964年新潟地震、1983年日本海中部地震及び1993年北海 道南西沖地震の既存の解析結果を前提に平均すべり量が4.5mで飽和

するものと仮定した上, (c)日本海側で解析結果のある地震の既存断層モ デルのすべり量のばらつきを考慮して標準偏差を加えて上記平均すべり 量(6m)を設定していることが認められるところ(甲D472の1・ 2),不均質モデルにおいては、採用したスケーリング則の違いこそあ れ、平均すべり量が300cmで飽和することを前提とする限度では上記 (a)とほぼ共通である。それにもかかわらず、上記報告書が設定した平均 すべり量(6m)に比べて不均質モデルのそれが小さいのは,不均質モ デルにあっては、上記報告書に見られるような、スケーリング則を前提 とした場合に求められる平均すべり量が内包する不確かさ(上記(b), (c)) を考慮した形跡が見当たらないことによるものと考えられるから、その 点において、不均質モデルにおける平均すべり量の設定のありようには 疑問の余地がないではない。しかし、上記報告書が見込んだ不確かさ (上記(b), (c)) は、いずれも日本海側における既存地震で得られた解析 結果に基づくものであるから、これをそのまま不均質モデルにおいても 前提にすべきであるとまではいえないし、そもそも不均質モデルを設定 して数値シミュレーションを試みることになった経緯に関する上記認定 事実に加え、一様すべり量モデルにあっては平均すべり量を7mと設定 しており、既に相応に保守的な設定であるという余地があることに照ら すと、上記報告書が想定する平均すべり量と不均質モデルのそれを単純 に比較して、不均質モデルにおける平均すべり量の設定が合理的でない とまでいうことはできない。また、不均質モデルにおける平均すべり量 は、一様すべり量モデルのそれの半分以下となるけれども、両者は平均 すべり量の導き方を異にするのであるから、これらを単純に比較するの もまた相当でない。

この点に関する債権者らの主張は、いずれも採用することができない。 (エ) 債権者らは、断層傾斜角の不確かさとして基準地震動の策定では考慮

していた北傾斜30度を考慮しないのは不合理である旨も主張する。

しかし、債務者は、本件申請の過程で、地質境界断層と震源断層が一致する可能性を考慮し、断層傾斜角を北傾斜30度等とする津波断層モデルをも想定し、数値シミュレーションを行った結果、津波発生源としての影響が小さく、基準津波に選定するに至らなかったことが認められる(乙166)。この点に関する債権者らの主張は、その前提を誤っており、採用することができない。

ウ その他の点について

(ア) 上下方向のずれの可能性について

債権者らは、本件敷地の前面海域から伊予セグメントの中央構造線断層帯が活動する際に想定される地震のモーメントマグニチュードは熊本地震のそれ(Mw7.0)を超えるMw7.61と見られていること、断層の変位の向きはともに上下変位を伴う横ずれ断層と見られていること、伊予灘では複数の断層が並走し、これらの断層に挟まれて断層凹地が形成されていることからすると、敷地前面海域断層群でスリップパーティショニングが生じ、断層の上下方向のずれと海底の陥没により津波が増幅されることも十分考えられる旨も主張する。

しかし、一件記録によれば、スリップパーティショニングは、縦ずれ成分を含む横ずれ断層で地震が発生する際に、地震のエネルギーが大きいために、その縦ずれ成分と横ずれ成分とが地表に別個に現れる現象であると理解することができるから(甲D474、D475)、スリップパーティショニングの現象そのものを想定しなくとも、適切に縦ずれ成分が考慮されていれば、津波高の想定として合理性に欠けるところはないことになる。

そして,債務者は,中央構造線断層帯が横ずれ断層であることから地 震に伴って大きな津波が生じることは考え難いとしつつも,仮に上下方 向のすべり成分を加味したとすれば、同断層帯による地震に伴う津波が本件原子炉に影響を及ぼす可能性が高いと考えられることを踏まえ、敷地前面海域断層群及び伊予セグメントがずれる際、水平面に対して上向き又は下向きにずれることにより断層面を境に高低差が生じることを想定して津波評価を行っていることが認められ(乙11)、その想定が不合理であるとはいえない。この点に関する債権者らの主張は、採用の限りではない。

(イ) 大分県モデルとの比較について

債権者らは、大分県の津波浸水予測は、県民を避難させる等の一般防災を目的としており、原子力発電所のような極めて高度な安全性の求められる施設の安全確保まで目的としたものではないから、大分県の想定よりも若干保守的な評価をしただけでは、万が一の確率で発生する大津波にも対応できるような津波想定になったとは到底いえない旨も主張する。そして、債務者は、大分県による津波浸水予測を基にして、別府一万年山断層帯のパラメータを設定していることが認められるところ(乙154、155)、当該予測は、地震・津波による具体的な人的・物的被害を推計し、避難所運営、備蓄物資、災害廃棄物の処理用地の確保など、今後の県・市町村の防災・減災対策の資料として行われたものであることが窺える(甲D477)。

しかし、債務者が依拠したのは、上記津波浸水予測において公開されている断層パラメータであるところ、当該断層パラメータが過小な値であることを認めるに足りる疎明資料は一件記録中には見当たらない。しかも、債務者は、上記断層パラメータをそのまま流用したわけではなく、より安全側となるよう、上記断層パラメータを基に、豊予海峡断層の地震モーメントを約1.32倍にし、すべり量をそれぞれの断層について数十cm程度引き上げた数値をもって、別府一万年山断層帯における波源

の基準断層モデルを設定したというのである(乙155)。そうであれば、債務者による上記基準断層モデルの設定が不合理であるということにはならない。この点に関する債権者らの主張は、採用することができない。

(4) 津波予測の精度について

債権者らは、上記第3の8債権者らの主張欄(3)のとおり主張し、それに沿う資料(甲C190, D472, D478, D546の1)を提出する。

しかし、債務者が依拠する土木学会(2002)は、その提案に係る方法に基づ いて計算される設計想定津波は、平均的には既往津波の痕跡高の約2倍とな っていることが確認されているとされているから(乙152),土木学会 (2002)を前提とし、これを適用する限りは、少なくとも、津波の高さの点に おいて相応のばらつきが考慮されたことになると一応いってよい。なお、土 木学会(2002)が、電力事業者らによって、殊更に津波高さの想定を小さく止 めることをもくろんで策定されたものであることを認めるに足りる資料は見 当たらないし(債権者らの主張も、その旨が疑われるとの主張の域を出てい ない。), 土木学会原子力土木委員会津波評価部会の主査として土木学会 (2002)の策定に携わっていた首藤伸夫・東北大学名誉教授(以下「首藤元主 査」という。)において、取りまとめの後、パラメータスタディによっても カバーし難い誤差の存在を指摘し、津波予測が倍半分にとどまる旨述べるけ れども(甲C190)、土木学会(2002)の成果を既往津波の痕跡高を参照し て検証した結果が上記のとおりであったことに照らすと、首藤元主査の上記 指摘があるからといって,直ちに土木学会(2002)を用いた津波予測がばらつ きを無視した過小評価につながるとまで決めつけることはできない。

また,①いわゆる「四省庁報告書」において,すべり量に偏差を加えることが提案され(甲D478),②「日本海における大規模地震に関する調査検討会報告書」において,実際に偏差が加えられたり,震源断層の一部分に

いわゆる「大すべり域」を設定したモデルを想定したりしている(甲D47 $201 \cdot 2$)。しかし,債務者は,海域の活断層による地震に伴う津波の検討に当たり,中央構造線の長期評価にいうすべり量の値(スケーリング側をそのまま適用した場合よりも大である。)を用いたほか,アスペリティ上部すべり量を平均すべり量の3倍に設定した不均質モデル(ケース 2)を考慮したり,プレート間地震に伴う津波の検討に当たり,南海トラフの巨大地震の地震モデルのうち,「四国沖~九州沖」に「大すべり域+超大すべり域」を設定したケースによる津波を対象津波として選定したりするなど,すべり量につき相当程度の不確かさを考慮したものと一応評価してよい。それのみならず,例えば,渦動粘性係数を $0 \, \text{m}^2$ /秒とすることなど,各種断層パラメータを一応安全側に考慮し,これにより,土木学会(2002)で提案されている値によった場合(渦動粘性係数を $1 \, 0 \, \text{m}^2$ /秒とする場合)の約 $2 \, \text{倍の津波高さを考慮できたこと(乙 <math>1 \, 6 \, 7$)が認められる。

してみると、上記①、②の各知見に照らしても、債務者がした津波予測の 精度が科学的安全性に悖るとまでいうことはできない。この点に関する債権 者らの主張は、採用することができない。

(5) 小括

以上によれば、基準津波の策定及びその原子炉施設への影響評価につき新規制基準の内容に不合理な点はないし、本件原子炉施設における津波に関する債務者の評価が新規制基準に適合するとした原子力規制委員会の判断や、それへ至る過程に不合理な点はない。

- 9 火山事象の影響による危険性(争点9)について
 - (1) 本件原子炉施設の立地評価について
 - ア 本件発電所の立地評価に当たって適用された火山ガイドの内容は,前提 事実のとおりであるところ,そうである限り,立地評価に関する火山ガイ ドの定めは、少なくとも地球物理学的及び地球科学的調査等によって検討

対象火山の噴火の時期及び規模が相当前の時点で的確に予測できることを 前提としている点において、その内容が不合理であるというべきであって、 少なくとも過去の最大規模の噴火により設計対応不可能な火山事象が原子 力発電所に到達したと考えられる火山が当該発電用原子炉施設の地理的領 域に存在する場合には、原則として立地不適とすべきである。

もっとも、少なくともVEI7以上の規模のいわゆる破局的噴火については、その発生の可能性が相応の根拠をもって示されない限り、発電用原子炉施設の安全性確保の上で自然災害として想定しなくても、当該発電用原子炉施設が客観的にみて安全性に欠けるところがあるということはできないし、そのように解しても、本件改正後の原子炉等規制法の趣旨に反するということもできないものというべきであって、これを火山の影響に係る立地評価の基準についていえば、当該発電用原子炉施設の運用期間中にそのような噴火が発生する可能性が相応の根拠をもって示されない限り、立地不適としなくても、原子炉等規制法の趣旨に反するということはできず、また、原子炉等規制法の委任を受けて制定された設置許可基準規則6条1項の趣旨にも反しないというべきである。(以上につき、前掲福岡高等裁判所宮崎支部決定)

- イ これを本件についてみると、次のようにいうことができる。
 - (ア) 本件発電所の地理的領域に存在する火山のうち、阿蘇については、その過去の最大規模の噴火が阿蘇4噴火であり(前提事実(4)工(イ) d)、阿蘇4噴火に伴う火砕流が本件敷地に到達した可能性が示唆ないし指摘されているけれども(甲D343。ただし、到達した可能性があると認められるかどうかは争いがある。)、それ以外の火山については、一件記録を精査しても、当該火山における過去最大規模の噴火に伴う設計対処不可能な火山事象が本件敷地に到達したことを窺わせる資料は見当たらない。

- (イ) そして、阿蘇4噴火は、その噴出物が600km とされており、VEI 7に相当することが認められるところ(乙11、審尋の全趣旨)、その ような破局的噴火及びこれに関連する事象に関する知見の状況として、 ①少なくとも破局的噴火が発生するためには地下浅所(ただし、具体的 な深さの程度については未だ確立された知見はない。)に大量の主に珪 長質マグマ(流紋岩質ないしデイサイト質)が蓄積されている必要があ るというのが一般的な知見であること、②地下浅所のマグマ溜まりは破 局的噴火の直前の数千年から数百年(あるいはそれ以下)の極めて短期 間に大量のマグマが充填されて形成されるとする見解も有力であること、 ③破局的噴火の直前にはプリニー式等の爆発的噴火が先行することが多 く、このことはカルデラ噴火の機序からも説明できること、④マグマの 蓄積率を推測する手法は存在するものの、マグマの蓄積量を精度良く推 測する手法はいまだ存在しないとされていること,以上の状況にあるこ とが認められ(甲D233)、これを覆すに足りる資料は見当たらない。 そうしたところ、阿蘇については、中央火口丘西部の草千里の深さ約 6 kmにマグマ溜まりが存在することが推測されているほか、阿蘇カルデ ラ中央部の深さ9~15km付近にもマグマ溜まりが存在する可能性を示 唆する調査結果が得られているとはいうものの(乙11、289)、そ うだからといって、カルデラ直下に大規模な珪長質マグマが蓄積されて いるとはいえないし、ほかにこのことを裏付けるに足りる資料は見当た らない。また、阿蘇の現況を指してプリニー式等の爆発的噴火の状況に あることを指摘する報告も見当たらない。そうであれば、本件発電所の 運用期間中に阿蘇4噴火のような噴火が発生する可能性が相応の根拠を もって示されたとはいえない。
- (ウ) そうすると、本件発電所については、阿蘇を含む本件発電所の地理的 領域にある火山との関係で立地不適としなくても、原子炉等規制法の趣

旨に反するということはできないし、設置許可基準規則6条1項の趣旨 にも反しないことになるから、本件原子炉施設を火山との関係で立地不 適としなかった原子力規制委員会の判断は、少なくとも結論において合 理性を欠いているとまでいうことはできない。

- ウ これに対し、債権者らは、上記第3の9債権者らの主張欄(1)及び(2)のと おり主張するけれども、上記説示に照らし、採用することができない。
- (2) 降下火砕物による影響評価について
 - ア 降下火砕物の最大層厚の想定について

債権者らは、上記第3の9債権者らの主張欄(3)のとおり主張する。

債務者は、降下火砕物の影響評価に当たり、当初は、九重第一軽石の噴出量を2.03km²として本件敷地付近における火山灰の降下厚さをシミュレーションし、要するに、「0cm~数cm」と結論していたが(乙11)、原子力規制委員会の指摘を踏まえて、九重第一軽石の噴出量を6.2km²と想定した上で改めてシミュレーションしたところ、風向きによっては火山灰の降下厚さが最大14cmに達する結果を見たというのである(乙11)。そして、「6.2km²」という九重第一軽石の噴出量の想定は、長岡信治・奥野充「九重火山のテフラ層序」(2014)で示された量であることが認められ(乙11)、一件記録を精査しても、九重第一軽石の噴出量が6.2km²を超えることを示唆する知見や報告は見当たらない。そうであれば、噴出量を「6.2km²」とするシミュレーションは、九重第一軽石と同程度の噴火を想定した場合におけるシミュレーションとしては一応合理的な設定となっているといえるところ、債務者が降下火砕物の影響評価の前提となる最大層厚として設定した「15cm」は、上記シミュレーションの結果得られた最大層厚14cmを上回る。

なお,町田・新井(2011)によれば,本件敷地付近では,地理的領域内の 阿蘇カルデラを起源とする降下火砕物のほか,地理的領域外の加久藤カル デラ、姶良カルデラ、阿多カルデラ及び鬼界カルデラを起源とする降下火砕物も降下したとされているところ、上記敷地付近における主な降下火砕物として、鬼界アカホヤ(K-Ah)火山灰(降下厚さ20~30cm)、姶良(AT)火山灰(同20~50cm)、阿蘇4火山灰(同15cm以上)とされている(乙11)。しかし、上記のカルデラ火山の噴火は、いずれもVEI7に分類される破局的噴火であるとされているところ(審尋の全趣旨)、一件記録を精査しても、破局的噴火及びこれに関連する事象に関する知見の状況(上記(1)イ(イ)①ないし④)に照らし、本件発電所の運用期間中に阿蘇4噴火のような噴火が発生する可能性が相応の根拠をもって示されているとはいえないから、そのような破局的噴火に伴う降下火砕物の影響を考慮の外に置いたとしても、本件発電所が客観的にみて安全性に欠けるところがあるということはできないものというべきである。

また、地理的領域にある火山である阿蘇については、VEI7に至らないまでも、阿蘇1ないし3噴火があり、宇和盆地中心部におけるボーリング調査によっても阿蘇1ないし3噴火に伴う火山灰の堆積が認められるけれども(乙11)、阿蘇におけるマグマ溜まりの現状に関する最新の知見や、阿蘇山の現在における火山活動がプリニー式等の爆発的噴火の状況にあることを指摘する報告も見当たらないこと(上記(1)イ(イ))に照らすと、少なくとも阿蘇に関する限り、VEI6クラスの巨大噴火の発生を考慮しないことが社会通念上不合理であるとまでいうことはできない。

さらに、九重第一軽石と同程度の噴火を前提に想定するとしても、その噴出量が6.2 kmを超えることを示唆する知見や報告は見当たらないし、宇和盆地中心部におけるボーリング調査の結果、Kkt火山灰(約33万年前)以降の主要な広域火山灰(例えば、阿蘇1ないし4、姶良、阿多等)が全て含まれていたのに、九重第一軽石の存在が認められなかったこと(乙11)に照らすと、九重第一軽石が、その噴出量によりVEI5に分

類されたからといって、直ちにVEI5に分類される火山の噴出量の上限である10kmを設定すべきことにはならない。

してみると、債務者において、影響評価において降下火砕物の最大層厚について、九重第一軽石の噴出量 6.2 km を踏まえ、本件原子炉施設に降下する降下火砕物の層厚を15 cmとして評価したことが不合理であるとまでいうことはできない。この点に関する債権者らの主張は、採用することができない。

イ 降下火砕物の大気中濃度の想定について

- (ア) 債権者らは、上記第3の9債権者らの主張欄(4)アのとおり主張する。
- (イ) 債務者が大気中濃度を想定するにあたって依拠したエイヤヒャトラ氷 河のヘイマランド地区の観測値については、①約5mmの層厚の下における、②PM10(直径10μm以下)のみを対象とした、③噴火から数か 月後の測定値であることが指摘されており(甲D349~D351)、それによれば、上記観測値を基に想定した降下火砕物の大気中濃度は相当の過小評価になるおそれがあるものというべきである。

それどころか、1980年にセントへレンズ山でVEI4に相当する規模の噴火が発生した際の、噴火地点から約135km東側にあり、約5mmの降下火砕物が降下したとされる Yakima 地区における大気中火山灰濃度は、大規模噴火当日における24時間平均値で3万3400μg/㎡であったとされている(甲D352。この観測値を以下「セントへレンズ観測値」ということがある。)。そうしたところ、原子力規制委員会は、平成28年10月26日、発電用原子炉施設に対する降下火砕物の影響評価について議論した末、原子力規制庁に対し、関西電力美浜発電所3号機について行われた1980年のセントへレンズ山の噴火で得られた観測データを用いた影響評価と同様の評価を、九州電力川内原子力発電所1、2号機、本件原子炉施設及び関西電力高浜発電所1~4号機

についても行うことを各事業者に求めるように指示するに至り、これを 受けた原子力規制庁は、同月31日、各事業者に対し、当該評価を行う よう求めたというのである(乙305)。

そうであれば、少なくとも、債務者がエイヤヒャトラ氷河のヘイマランド地区の観測値をもとに想定した「 $3241\mu g/m^3$ 」は、今や明らかに過小な想定であるといわねばならない。

(ウ) ところで、電力中央研究所(電中研)は、平成28年4月、「数値シミュレーションによる降下火山灰の輸送・堆積特性評価法の開発(その2) - 気象条件の選定法およびその関東地方での堆積量・気中濃度に対する影響評価」(以下「電中研報告」という。甲D537)において、1707年富士宝永噴火(噴出量0.7k㎡(VEI4))を素材として、河口湖(山梨)、三島(静岡)、横浜(神奈川)、千葉(千葉)、館野(茨城)、東京(東京)及び大島(東京)の7地点における地表面近傍での降下火山灰の大気中濃度の経時変化をシミュレーションし、その結果を公表している。それによれば、横浜(富士山からの距離約85km、降灰実績16cm)において大気中濃度が約1000mg/㎡となるケースが、千葉(富士山からの距離約130km)において大気中濃度が100~1000mg/㎡となるケースが、千葉(富士山からの距離約130km)において大気中濃度が10~1000mg/㎡となるケースが、千葉(富士山からの距離約130km)において大気中濃度が1

しかし、電中研報告は、降下火山灰に対する原子力発電所等の設備・ 運用での対策の検討にとって有益な情報を得るべく、数値シミュレーション技術を構築している電中研において、ハザード評価のための気象条件の設定が課題となっていたことから、降下火山灰の性状に対して影響が大きい風速・風向分布の特徴に注視した気象条件の設定法を検討することを目的として行われた研究に関するものであること、同研究の成果は、あくまでも上記の設定のありようや、関東地方における降下火山灰 の堆積量・大気中濃度の空間分布や時間変化の特徴が把握できたという 点にある一方、今後、気温や降雨条件も加味するなどして気象条件の設 定方法の高度化を進める必要性ないし方向性が示されていること,以上 の事実が認められる上(乙317),電中研報告に対しては、計算の初 期条件(噴火時の噴出率または噴煙高度)を設定するために、計算対象 とする噴火・降灰の詳細な観測や地質調査の情報が必要であるとか、シ ミュレーションに用いる計算機コードにバグの存在が確認されるなどの 諸課題が指摘されており、少なくとも現時点では、原子力規制委員会に おいて電中研報告を前提とした影響評価を相当とするには至っていない というのである(乙310ないし312)。そうであれば、電中研報告 は、そもそも1707年富士宝永噴火に伴う降下火砕物の大気中濃度を 求めること自体を目的とした研究には当たらないし、同研究で試みられ ているシミュレーションも研究開発途上にあり,いまだ原子力規制委員 会において影響評価のための指標として採用されるに至っていないもの というほかはない。したがって、電中研報告の内容をそのまま降下火砕 物の影響評価に用いることが相当でないことは明白である。

- (エ) してみると、本件原子炉施設に対する降下火砕物の影響評価の前提となる大気中濃度としては、これをセントヘレンズ観測値と想定した上、さらに安全性が確保されているか評価するのが相当である。この点に関する債権者らの主張は、上記の説示に反する限度で採用することができない。
- ウ 非常用ディーゼル発電機への影響について
 - (ア) 債権者らは、特に外気取り入れ口からの降下火砕物による機械的影響を考慮すべき施設(乙11)のうち、非常用ディーゼル発電機について、上記第3の9債権者らの主張欄(4)イのとおり主張する。
 - (イ) 降下火砕物による吸気フィルタの閉塞について

上記イで説示したとおり、債務者が本件原子炉施設の原子炉設置変更許可申請に当たり、非常用ディーゼル発電機への降下火砕物の影響評価において想定した降下火砕物の大気中濃度「 $3241\mu g/m^3$ 」は明らかに過小な想定であって、上記影響評価において安全性が確保されているというためには、セントヘレンズ観測値を用いた再評価に耐え得るものでなければならない筋合いである。

- 一件記録によれば、以下の事実が一応認められる。
- a 非常用ディーゼル発電機の吸気消音器は、建屋の壁面に設置された 概ねL字状を呈する吸気導管の上端に、上から吸気導管に覆い被さる ように設置される機器である。吸気消音器の底部には、吸気導管に被 さる部分を除いたドーナツ状を呈する外気取入口が設けられており、 外気は、下方から上方へ向かって外気取入口から吸い込まれ、吸気消音器を経て吸気導管へ導かれる構造となっている。

本件原子炉施設に設けられた非常用ディーゼル発電機の吸気消音器の外気取入口には層状のフィルタが設置されている。フィルタは、ドーナツを8つに分割した形状のパーツに分かれており(分割されたパーツ1個当たりの重さ約6kg)、パーツはそれぞれ4つのボルトで固定されている。フィルタの交換は、吸気消音器の底部から約1m低い位置に設けられているグレーチング足場において行うものとされている。

(以上につき, 乙11, 306, 審尋の全趣旨)

b 原子力規制庁は、本件申請に対して原子炉設置変更許可処分があった後である平成28年10月31日、原子力規制委員会の議論を受け、 債務者を含む電力事業者3社に対し、1980年セントヘレンズ山の 噴火で得られた観測データを用いて発電用原子炉施設(債務者につき 本件原子炉施設、九州電力につき川内原子力発電所1、2号機、関西 電力につき高浜発電所 $1 \sim 4$ 号機)の機能に対する影響評価を行うよう指示した(< < < < < > < < < < > < < < < > < < < < > < < < < > < < < < > < < < < < > < < < < < > < < < < < > < < < < < > < < < < > < < < < > < < < > < < > < < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > <

c 上記bの指示を受けた債務者は、セントヘレンズ観測値を用いた影響評価を行う施設を非常用ディーゼル発電機吸気消音器ほか1点と特定した上、改めて影響評価を行った。そして、債務者は、平成28年11月10日、原子力規制庁に対し、上記影響評価の結果、フィルタを交換すること等により施設の機能を確保できることを確認した旨報告した。

(以上につき、乙306)

d 上記 c の影響評価によって債務者が改めて施設の機能を確保できる 旨確認した根拠は、次のとおりである。

すなわち、セントヘレンズ観測値を前提にした場合、吸気フィルタが閉塞するまでの時間は、次の手順により 1. 9時間と求められる(なお、債務者が当初想定していたエイヤヒャトラ氷河のヘイマランド地区の観測値(3241 μ g/m3)における吸気フィルタが降下火砕物によって閉塞するまでの時間は19. 8時間であった。)。

- ① 吸気フィルタ灰捕集容量 1000g/㎡
- ② 吸気フィルタ表面積 3.27㎡
- ③ 吸気フィルタでの灰捕集量(①×②) 3270g
- ④ 降下火砕物の大気中濃度 セントヘレンズ観測値
- ⑤ ディーゼル発電機吸気流量 5万1000㎡/h
- ⑥ 吸気フィルタが降下火砕物によって閉塞するまでの時間(③/④/⑤×10⁶ 1.9時間

そして,フィルタ交換には複雑な作業は必要ないから,フィルタ交換の所要時間は,要員 $3\sim5$ 人により1時間程度であることが見込まれる。

(以上につき, 乙306)

- e 債務者は九州電力,関西電力とともに,上記cの報告をしたところ,原子力規制庁から,現時点での設備と運用の組合せにより,最大どの程度の火山灰濃度に対して対応が可能であると評価しているかなどについて照会を受け,平成28年11月25日,原子力規制庁に対し,ディーゼル発電機の吸気フィルタは,少なくともセントヘレンズ観測値の2倍程度の濃度まで対応可能であるが,実際にはさらに余裕があると考えている旨回答した(乙307~309)。
- f 債務者を含む電力事業者からの上記 c ないしe の各報告内容は、いずれも原子力規制委員会に諮られたが、上記報告内容に対し、平成29年1月25日までに開かれた会議において格別の異論をみなかった(乙311、312)。

なお、原子力規制委員会は、今後、発電用原子炉施設の機器等への 降下火砕物の影響評価に関する考え方及び留意点を検討し、これを取 りまとめることを予定している(乙311)。

以上の事実が認められる。

上記認定事実によれば、本件原子炉施設の非常用ディーゼル発電機の 吸気消音器は、外気取入口がもともと下向きに設けられていることから 降下火砕物が自然には侵入しづらい構造となっている上に、外気取入口 にフィルタが設けられており、かつ、セントヘレンズ観測値を前提とし た場合に降下火砕物によってフィルタが閉塞するまでの時間はおよそ 2 時間弱であると試算されるところ、フィルタ交換に要する時間は1時間 程度であるというのである。そして、上記認定に係るフィルタの形状、構造、取付手順等に照らすと、フィルタ交換の所要時間の見込みは一応 合理的であるといえる。また、上記 d の事実に照らすと、上記試算は、降下火砕物の大気中濃度が常に高濃度であるセントヘレンズ観測値のま

まで一定で、かつ、フィルタが降下火砕物の粒径の如何を問わず、その 全てを捕集することを前提とした計算であることが明らかであるけれど も、実際には、大気中濃度は時間の経過や風向等によって変動するし、 粒径の小さい降下火砕物はフィルタを通過してしまうであろうことは見 やすい道理であるから、上記試算は上記の諸点をフィルタがより早く閉 塞する方向でパラメータを単純化した、より保守的な想定に基づくもの といってよい。このように、上記試算が保守的であることは、呼気速度 を56㎡/分として降下火砕物による換気用フィルタの目詰試験をした ところ、フィルタが機能喪失するまでの時間が、70mg/m³では178 分, 700 mg/mでは26.3分, 7000 mg/mでは3.5分であっ た旨の産総研の報告(甲D539)からも窺い知ることができる。そし て、債務者が上記のとおり改めて行った影響評価について、原子力規制 委員会において格別の異論もなかったというのである。そうであれば, セントヘレンズ観測値を前提とした影響評価において、非常用ディーゼ ル発電機の吸気消音器の閉塞の点につき、安全性が確保できる旨の債務 者の評価は一応合理的なものということができ、その評価を了とした原 子力規制委員会の判断も合理的であるといって差し支えない。してみる と、非常用ディーゼル発電機の吸気消音器の閉塞に関する影響評価に対 する原子力規制委員会の判断は、結論において合理的であるというべき である。

債権者らは、この点に関する主張に沿う証拠として、降下火山灰の厚さが降雨時には5mmで、それでなくても5cmで、道路が通行不能となるとか、1980年のセントヘレンズ山の噴火の際、降下火山灰が6mmや1.3cmで自動車のエンジンが故障した例がある旨の報告(甲D353)や、国内で過去に起きた複数の噴火の際に火山灰が社会生活に与えた影響の報告(甲D354)を提出する。しかし、上記報告に係る事象が、

どのような大気中濃度の経時的変化の中で生じたか定かではないし、例 えば自動車のエンジンの故障とか、人が外出できなくなったなど、火山 灰が一般の社会生活に及ぼした影響をもって、降下火砕物に対する防護 作業の困難性を安易に推し量るのは早計であるといわねばならない。

また、債権者らは、平成28年11月16日に開かれた原子力規制委員会の会議における石渡明委員の発言を指摘して(甲D608)、非常用ディーゼル発電機の吸気消音器の外気取入口が下向きに設けられていることが降下火砕物を吸い込みにくい構造とはいえない旨の主張もするけれども、上記発言は、その内容からして、外気取入口の上記構造が、粒径の如何を問わず、およそ降下火砕物の侵入防止に効果がないと述べているわけではない(すなわち、砂程度を上回る粒径の降下火砕物の侵入防止にはある程度の効果が見込める旨を前提としている)ことが明らかであるところ(甲D608)、フィルタの閉塞時間をめぐる上記想定は、あらゆる粒径の降下火砕物を全て捕集することを前提としたものであるから、上記発言のゆえに、上記想定が保守的であるとの評価が覆るわけではない。

したがって,非常用ディーゼル発電機の吸気消音器の閉塞をめぐる債権者らの主張は,採用することができない。

(ウ) 降下火砕物の機関内侵入による影響について

審尋の全趣旨によれば、債務者が非常用ディーゼル発電機の吸気消音器に取り付けているフィルタは、粒径120μm以上において約90%捕集する性能を有するものであることが認められる。そうであれば、粒径120μm以上の降下火砕物の約10%と粒径120μmより小さい降下火砕物はフィルタで捕集されることなく機関内に侵入するということになる。そうすると、シリンダライナとピストンリングとの間隙は数μm~十数μmと非常に狭くても、そこに、より小さな粒径の降下火砕物が入り込

む可能性は否定できないし、ピストンリング溝とピストンリングとの間 (サイドクリヤランス) は新品時において数十μm~100μm程度の間隙 となっている (審尋の全趣旨) のであるから、そこに降下火砕物が侵入する可能性は十分にあると考えられる。

しかし、本件発電所に設置されている非常用ディーゼル発電機を製造 した三菱重工業株式会社の意見書(乙196)によれば、「破砕試験の 結果から,『シラスは,川砂などに比べ極めて脆弱』と指摘されている ことを踏まえると、シラスと同様に火山ガラスを主成分とする降下火砕 物は、川砂等に比べて脆弱で破砕しやすいと考えられるため、仮にシリ ンダライナとピストンリングとの間隙に降下火砕物が入り込んだ場合で あっても、ピストンリングとシリンダライナとの接触により粉砕され、 燃焼に伴う排気ガスとともに排出されるか、ピストンリングとシリンダ ライナとの間に常に流れている潤滑油とともにクランクケース内へ降下 することになる」し、焼付きとの関係では、「仮に膨張行程でシリンダ 内の温度が1000℃を超えて非常用ディーゼル発電機の機関内に侵入 した降下火砕物の溶融が生じたとしても」, 「極めて短時間の局所的な 現象であり、シリンダ内の温度はすぐに降下火砕物の融点より低い温度 にとどまり、降下火砕物は再び固化すると考えられる」のであり、固化 した降下火砕物は破砕されるなどするから焼付きは生じないというので ある。

そうであれば、降下火砕物の一部はフィルタで捕集されない可能性は 否定できないけれども、だからといって、非常用ディーゼル発電機の機 能が確保されなくなることにはならないものというべきである。したが って、この点に関する債務者の評価には一応の合理性が認められる。

債権者らは、降下火砕物の硬度は、モース硬度5程度で、これをブリネル硬さに換算すると370程度であるのに対して、シリンダライナ及

びピストンリングはブリネル硬さ230程度であるから,降下火砕物が破砕され易いとはいえないと主張するけれども,ブリネル硬さは,超鋼球を圧子に用いて加重を負荷してその圧痕の大きさから硬さを求めるものであるのに対し,モース硬度は鉱物の硬さを表す尺度の一つで,あらかじめ設定した基準鉱物と評価対象となる物質とを引っ掻き合わせ,傷がついた方が柔らかいとして基準鉱物ごとに決められた1~10までの整数値で硬度を表したものであって(乙196),両者を単純に比較することはできない。そして,耐摩耗性という観点では,シリンダライナ及びピストンリングは,一般に摩耗に対して高い強度を有するとされる鋳鉄材を用いているのに対して,降下火砕物は,破砕試験の結果から,

「川砂などに比べ極めて脆弱」と指摘される程度の強度しか有していない(乙196)のであるから、債権者らが主張するように、降下火砕物が破砕され難いとは認められない。この点に関する債権者らの主張は、採用することができない。

エ 上記の点のほか、債務者のした降下火砕物による影響評価について、一 件記録を精査しても、これが合理性を欠くというべき点は見当たらない。

(3) 小括

以上によれば、火山事象の影響による危険性の評価につき新規制基準の内容に不合理な点は見当たらない。そして、立地評価に関する火山ガイドの定めには不合理な点があるものの、上記(2)で説示したとおり、本件原子炉施設を火山との関係で立地不適としなかった原子力規制委員会の判断は、少なくとも結論において合理性を欠いているとまでいうことはできない。また、降下火砕物の影響評価において、その前提となる降下火砕物の大気中濃度に関する債務者の当初の想定は過小であったものの、セントヘレンズ観測値を用いて改めて行った影響評価の内容は一応合理的であるというべく、これが新規制基準に適合するとした原子力規制委員会の判断も結論において不合理と

はいえないことになる。

なお、発電用原子炉施設の機器等への降下火砕物の影響評価に関する考え 方及び留意点をめぐっては、現在、原子力規制委員会における検討が進めら れているところ(上記(2)ウ(イ)f)、その検討が遂げられ、新たな審査の内規 が策定されたときは、いわゆるバックチェックを通じた審査が行われるべき である。もっとも、そのことは、降下火砕物の影響評価をめぐる新たな観測 記録の収集及び分析の伸展並びにそれに伴う最新の専門的科学的知見の獲得 の成果をその時点における審査に生かすプロセスにほかならず、既設の機器 等の安全性が、現時点において社会通念上求められるレベルに達していない ことを意味するわけではない。したがって、原子力規制委員会の議論状況が 上記のとおりであるからといって、本件原子炉施設が新規制基準に適合する 旨の上記判断の合理性が左右されるわけではない。

- 10 シビアアクシデント対策の合理性(争点10)について
 - (1) シビアアクシデント対策の不備について

債権者らは、福島第一原発事故の原因の一つがシビアアクシデント対策の不備にあること、福島第一原発事故を受けて改正された原子炉等規制法がシビアアクシデント対策を設置(変更)許可の際に判断すべき事項として位置付けたこと等からすれば、本件発電所のシビアアクシデント対策に不備がないことが疎明されない場合には、仮に深層防護の1層から3層までの対策に不備がないことが疎明されたとしても、「災害の防止上支障がない」とはいえず、具体的危険性が認められることになるとして、深層防護の4、5層の対策に不備がないことの主張、疎明がないから、具体的危険が認められる旨主張する。

しかし、債権者らが指摘する深層防護の4層とは、重大事故が発生した場合において、事故の拡大を防止するなどして放射性物質が環境に異常に放出される事態を防止するものを指すと解されるところ、債務者は、新規制基準

が重大事故等対処施設の設置等を要求していることから,万が一,重大事故 等に至った場合であっても放射性物質が環境に異常に放出される事態を防止 することができるよう重大事故等対策を講じていることにつき主張,疎明を しているのであるから,債権者らの上記主張は採用することができない。

また、債権者らが指摘する深層防護の5層とは、重大事故に起因して発生 し得る放射性物質の放出による影響を緩和するための対策を指すものと解さ れるところ、このような対策については、災害対策基本法及び原子力災害特 別措置法によって、「災害」の一形態としての「原子力災害」として、国、 地方公共団体、原子力事業者等がそれぞれの責務を果たすこととされている のであるから、原子炉等規制法の適用を前提として債務者の対策の不備を指 摘する債権者らの上記主張も採用の限りでない。

(2) 可搬式設備での対応等について

ア 債権者らの主張について

この点に関する債権者らの主張の要旨は、本件原子炉施設におけるシビアアクシデント対策は、①気象条件等により作業が困難となるなど不確実な可搬式設備での対応を基本としていること、②福島第一原発事故の十分な分析をせずに策定されたものであること、③シビアアクシデント時の環境条件を的確に把握できることが重要であり、少なくとも原子炉水位計等の計器がシビアアクシデント条件下で作動することが確認される必要があるが、それがされていないこと、④基準地震動を超える地震等の外部事象を想定した対策となっていないことから、深刻な災害が万が一にも起こらないといえる程度の対策となっているとは到底いえず、このようなシビアアクシデント対策をもって「災害の防止上支障がない」とは認められないなどというものである。

イ 可搬式設備での対応を基本としていることについて

常設設備については、これを設置する際には必ず設計上の想定を定めな

財ればならないことから、設計上の想定を超える事態に対処することが困難となるおそれがあるというデメリットがある。新規制基準においては、このような常設設備のデメリットを踏まえると、接続作業等の人的対応が必要となるデメリットはあるとしても、想定していた配管が使えなくなった場合でも他の配管への接続を試みることができる、接続に要する時間も接続手法の改善で短縮が見込める、作業環境も接続場所の分散などによって選択肢を広げる等の対策が可能となるなど対応の柔軟性があるとともに、耐震性上優れた特性があるというメリットの方が大きいことから、可搬式設備での対応が基本とされたものであり、また、事故発生の早い段階で必要と考えられる原子炉冷却材低圧時の冷却対策や電源確保対策については、常設設備により対応することとされたものである(乙93)。このような新規制基準の考え方自体は不合理でないと認められる(なお、特定重大事故等対処施設については後記(6)参照)から、債権者らの上記ア①の主張は、採用することができない。

ウ 福島第一原発事故の分析の十分性について

新規制基準は、原子力規制委員会の下に置かれた新規制基準検討チーム、地震津波基準検討チーム等において、国会、政府、民間、東京電力の4つの事故調査委員会がそれぞれ原因究明等を行って取りまとめた事故調査報告書を踏まえた検討がなされた上で制定されたものであり、原子力規制委員会は、本件原子炉施設の審査書案に対する科学的・技術的意見の公募手続で寄せられた「福島原発事故の検証が不十分。原因の究明を先に行うべき」との意見に対して、「東京電力福島第一原子力発電所事故については、基本的な事象進展等について整理されています。これを踏まえ、新規制基準を制定しました」と回答しているところである。(乙72、73、84、130)

このような経緯に鑑みれば、債権者らが主張するような意味での徹底し

た福島第一原発事故の分析が望ましいにしても、そのような分析を経なければ原子力発電所の再稼働ができないというのが社会通念になっているとも考え難いから、債権者らの上記ア②の主張は、採用することができない。

エ 原子炉水位計等の計器のシビアアクシデント条件下での作動の確認

上記説示のとおり、新規制基準においては、計測設備の故障により重大事故等に対処するために必要なパラメータを監視することが困難となる状況を考慮して、設計基準事故時の環境を上回る環境においても事態の収束に必要なパラメータを推定できるよう対策を講じることが求められており(設置許可基準規則58条)、債務者は、これを踏まえて、重大事故等発生時において原子炉の状態を把握するために特に監視することが重要となる「重要監視パラメータ」(原子炉容器圧力・温度・水位、原子炉格納容器内圧力・温度・水位等)を選定し、本来これらを監視するための計測設備が故障等した場合にも原子炉施設の状況を把握することができるよう、重要監視パラメータを推定するための「重要代替監視パラメータ」を計測する設備を重大事故等対処設備と位置付けて整備するとともに、可搬型計測器、電源(空冷式非常用発電装置)等も新たに整備しているのであって、これらにつき不合理でないことの疎明があったといえるから、債権者らの上記ア③の主張は失当である。

オ 基準地震動を超える地震等の外部事象の想定

債務者による基準地震動策定が不合理でないと認められることは、上記 3のとおりであるところ、そうである以上、基準地震動Ssを上回る地震 動によるリスクは社会通念上無視し得る程度のものであるということができるから、基準地震動Ssを大きく上回る地震動に対する耐震安全性が要求されるとは考え難いし、火山事象及び津波についても、それぞれ上記8及び9のとおり、社会通念に照らして債務者の想定は不合理でないと認められる上、このような極めて発生確率の低い自然事象やテロリズム等の人

為事象を重ね合わせて想定することが社会通念上要求されているとも考え難い。また、新規制基準においては、それでもなお基準地震動Ssを上回る地震動が発生するなどにより重大事故が発生した場合を想定して、重大事故等対処設備が、環境条件、地震、津波その他の自然現象等の外部事象による共通要因によって、設計基準事故対処設備の安全機能等と同時にその機能が損なわれることのないよう、可能な限り、多様性、独立性及び位置的分散を考慮して適切な措置を講じることを要求しているのである。このような新規制基準の考え方自体は不合理でないと認められる。

そして、債務者は、屋外に保管するポンプ車や電源車は、少なくとも2セットは原子炉建屋から100m以上の離隔距離を確保して保管するとともに、代替する設計基準事故対処設備が屋外設置の場合には当該設備から100m以上の離隔を確保している(乙11、13)のであるから、債務者の対応も不合理でないと認められる。

したがって、債権者らの上記ア④の主張は、採用することができない。

(3) 水素爆発対策について

ア 判断の基礎となる事実

(ア) 新規制基準の内容について

設置許可基準規則は、発電用原子炉施設には、炉心の著しい損傷が発生した場合において原子炉格納容器の破損を防止するため、溶融し、原子炉格納容器の下部に落下した炉心を冷却するために必要な設備を設けなければならないとし(同51条)、また、発電用原子炉施設には、炉心の著しい損傷が発生した場合において原子炉格納容器内における水素爆発による破損ないし原子炉建屋等の水素爆発による損傷を防止する必要がある場合には、水素爆発による原子炉格納容器の破損ないし当該原子炉建屋等の損傷を防止するために必要な設備を設けなければならない(同52、53条)と規定している。

(イ) 債務者による評価について

債務者は、ジルコニウムー水反応、溶融炉心・コンクリート相互作用 (MCCI), 水の放射線分解等によって水素が発生し、発生した水素 と原子炉格納容器内の酸素が反応することにより激しい燃焼が生じ、原 子炉格納容器の破損に至ることを特徴とする格納容器破損モードとして, 大破断LOCA時に低圧及び高圧注入機能が喪失する事故を評価事故シ ーケンスとして選定した上、外部電源についてはあるものとする(外部 電源がある場合、格納容器スプレイが早期に起動し、水蒸気が凝縮され ることにより、水素濃度の観点で厳しい設定となる。)、イグナイタは 12基設置するが水素濃度の観点で厳しくなるように機能することを期 待しない、原子炉圧力容器内の全ジルコニウム量の75%が水と反応し 発生すると仮定する、感度解析のパラメータを組み合わせた場合、MC C I に伴い発生する水素は、炉心内の全ジルコニウム量の約6%である ことを考慮するなど不確かさを考慮した条件設定をして、解析コードM AAPにより解析を行ったところ、MCCIによる水素発生を考慮して も、ドライ条件に換算した原子炉格納容器内水素濃度は最大約12.1 vol%となって、「実用発電用原子炉に係る炉心損傷防止対策及び格納容 器破損防止対策の有効性評価に関する審査ガイド」の「水素濃度がドラ イ条件に換算して13vol%以下であること」という基準を満たすと評価 した。(乙11, 13)

(ウ) 原子力規制委員会の審査について

原子力規制委員会は、格納容器破損モード「水素燃焼」に対して、債務者が格納容器破損防止対策として計画している水素濃度の低減が事象 進展の特徴を捉えた対策であるなどとして、同対策は有効なものである と判断した。(乙13)

イ 債権者らは、上記第3の10債権者らの主張欄(2)のとおり主張する。そ

して、一件記録を精査しても、債務者が見込んだイグナイタの効果の具体的な内容は判然としないし、イグナイタは、もともと放射線分解で発生した少量の水素を取り除くためのものであって、事故などで大量に発生した水素を除去する装置ではない旨、イグナイタの効果には限界があるかのように指摘する見解があること(甲C198)に照らすと、仮に100%のジルコニウムが水と反応することを想定した場合に、イグナイタによって水素濃度を13vol%未満に抑えて水素爆発を防ぐことができるかといえば、疑問の余地なしとしない。

ウ しかし、債務者は、「実用発電用原子炉に係る炉心損傷防止対策及び格 納容器破損防止対策の有効性評価に関する審査ガイド」に、「原子炉圧力 容器の下部が破損するまでに、全炉心内のジルコニウム量の75%が水と 反応する」ことを想定するよう定められていることを踏まえ、解析から得 られる反応割合は75%を大きく下回るもの(約30%)であったが,こ れを多めに補正して全炉心内のジルコニウム量の75%が水と反応するこ ととした上で、さらに不確かさの考慮として、MCCIに伴う水素の発生 も合わせて考慮した評価を行ったとしても、原子炉格納容器内の水素濃度 を13vol%未満に抑えることが可能であり、本件原子炉において水素爆発 が発生することはないことを確認している。この75%という数値自体, 山形原子力規制部安全規制管理官が、「水素発生量の評価においては、審 査ガイドに従いまして、原子炉圧力容器内の全ジルコニウムの75パーセ ントは水と反応する,そういう保守的な条件で評価を行っておりまして, さらにドライ条件,水蒸気がないという条件であるという,さらに保守的 なもので・・・」(乙140)と述べているとおり、相当保守的な数値で あるとも考えられるし、債務者の解析によれば、そもそも反応割合は30 %と評価されていたのであり(なお、債権者らからは、この30%とする 解析自体の合理性につき特段の主張はない。),債務者の上記評価で相当

の裕度を確保できていると考えられるから、解析コードMAAPにはMC CIの進行を過小評価する傾向があること等を踏まえて、100%のジルコニウムが水と反応することを仮定しなくても、債務者の評価に不合理な点はないというべきである。この点に関する債権者らの主張は、採用することができない。

(4) 水蒸気爆発対策について

ア 判断の基礎となる事実

(ア) 債務者による評価について

債務者は、水蒸気爆発に関しては、実機において想定される溶融物 (二酸化ウラン(燃料ペレット)とジルコニウム(燃料被覆管)の混合 溶融物)を用いた実験として、これまでに財団法人原子力発電技術機構 がカザフスタン国立原子力センターにおいて行った実験(COTEL S)、欧州JRCがイスプラ研究所において行った実験(FARO)、 欧州IRCがイスプラ研究所において行った実験(KROTOS)がそ れぞれ行われており、延べ30回に及ぶ溶融物の水プールへの落下実験 が実施されているところ、これらの落下実験のうち、KROTOSの実 験において膜沸騰状態を強制的に不安定化させるなどの条件において3 回の水蒸気爆発が発生した以外は水蒸気爆発は発生しておらず、膜沸騰 状態を不安定化させる外乱がない場合には水蒸気爆発が発生することは なく、外乱を与えた場合でも常に水蒸気爆発が発生するわけではないと 確認されていることを踏まえ、本件原子炉においては、溶融炉心が原子 炉下部キャビティに落下する際、実験で付加したような膜沸騰状態を不 安定化させる外乱は発生しないことから、本件原子炉において水蒸気爆 発が発生する可能性は極めて小さいと評価した。 (乙11)

(イ) 原子力規制委員会の審査について

原子力規制委員会は、債務者から、実機において想定される溶融物

(二酸化ウランとジルコニウムの混合溶融物)を用いた大規模実験として、COTELS、FARO及びKROTOSを挙げ、これらのうち、KROTOSの一部実験においてのみ水蒸気爆発が発生していることを示されるなどした上で、原子炉圧力容器外のFCI(溶融燃料ー冷却材相互作用)で生じる事象として、水蒸気爆発は除外し圧力スパイクを考慮すべきであることを確認した。(乙13)

イ 債権者らは、上記第3の10債権者らの主張欄(3)のとおり主張する。そ して、高島武雄・後藤政志「原子炉格納容器内の水蒸気爆発の危険性」 (甲C261)によれば、「実機が炉心溶融を起こすと、核燃料と溶けた 金属が混ざって、数百トンの溶融物が生じる。このうちどれだけの溶融物 が粗混合過程に寄与するかは不確かであるが、少なくとも数百kgないし 百トン程度まで考えておく必要がある。これに対して実験は2kgから約 180kg程度の溶融物で実施されている。これらの実験では、実機との スケールの比を溶融物の質量の規模で少なくとも百倍から数万倍近い外挿 をしていることになる」(COTELSでは約60kg, KROTOSで は約3kg, TROIでは $10\sim20$ kgの試料が用いられている。) し, 「過酷事故時に、100トンにも及ぶ溶融物が水プールに落下した場合は、 (1)少量の水を溶融物と水プール底部や壁との間に囲い込んだり、(2)水を含 む固形物を囲い込んだりする可能性がある。これらの場合は囲い込まれた 水が急蒸発して、水蒸気泡が急膨張することで、水蒸気爆発のトリガーと なる可能性がある。また、外部から流入する水流の発生や水温の急変(水 温低下)や水素爆発による圧力パルスなどもトリガーになり得る」とされ る。そして、KROTOSでは、外乱を与えた場合には水蒸気爆発に至っ たケースがあり、TROIでは、6回のうち4回で水蒸気爆発が発生して いることも踏まえると、水蒸気爆発の危険性を評価するにあたっては、実 機で炉心溶融が発生した場合に大量の溶融物が水蒸気爆発の外部トリガー

(外乱)となるおそれを考慮した上で、水蒸気爆発の危険性を評価することが求められていたようにも考えられる。債務者は、本件原子炉においては膜沸騰状態を不安定化させる外乱は発生しないとしているが、上記のようなおそれをどのように評価したのかは明らかではない。

なお、債務者は、TROIによる実験のうち、自発的な水蒸気爆発が生じた実験については、溶融物に対して融点を大きく上回る加熱を実施するなど、実機の条件とは異なった条件の下に実施されたものであり、TROIにおいて溶融物の温度を現実的な条件とした上で実験を行った「OECDSERENA計画」では、水蒸気爆発が生じないことが確認されている(乙283)と主張するが、このことから、実機における大量の溶融物が外乱となる可能性まで直ちに否定されるものとまではいえない。

ウ しかし、高島らが指摘するような大量の溶融物が水蒸気爆発の外部トリガーとなる可能性がどの程度あるのか明らかではないし、そもそも炉心溶融が発生したとして高島らが想定するような大量の溶融物が落下する可能性がどの程度であるのかも明らかでない。これに対して、「OECD SERENA計画」も踏まえると、COTELS、FARO、KROTOS及びTROIのいずれの実験においても、現実的な温度設定とするなどした場合には、数十kg程度の溶融物が落下したとしても水蒸気爆発が発生しないことが確認されているといえる。

そうすると、債務者が水蒸気爆発の危険性が極めて小さいと評価したことは一応合理的であるといえ、水蒸気爆発の危険性を除外することを認めた原子力規制委員会の判断も不合理でないと考えられる。上記の諸事情に照らすと、上記合理性について確信を得ようとすれば、例えば高島らをはじめとする当該分野の専門家や原子力規制委員会の関係者等に対する証人尋問を通じて、社会通念上想定すべき溶融物の質量、大量の溶融物を想定した場合にそれが水蒸気爆発の外部トリガーとなる可能性等を慎重に吟味

することを要するものといわねばならないが、そのような手続は、本件のような保全手続にはなじまない。この点に関する債権者らの主張は、その余の点も含め、採用することができない。

(5) 免震重要棟について

債権者らは、上記第3の10債権者らの主張欄(4)のとおり主張する。

しかし、設置許可基準規則解釈 6 1 条は、緊急時対策所の要件につき、「基準地震動による地震力に対し、免震機能等により、緊急時対策所の機能を喪失しないようにするとともに、基準津波の影響を受けないこと」と規定しており、その文言上必ずしも緊急時対策所に免震機能を要求していないことは明らかである。

また、免震機能を備えていないとしても、免震機能と同等の高い耐震安全性を備え、緊急時対策所の機能が緊急時にも維持されることが確保されているのであれば、重大事故等の対策として何ら問題はないと考えられるから、必ずしも免震機能を要求しない新規制基準の内容は不合理でないと認められる。

この点に関する債権者らの主張は、いずれも採用することができない。

(6) 特定重大事故等対処施設について

ア 債権者らは、上記第3の10債権者らの主張欄(5)のとおり主張する。

イ 原子力基本法は、原子力利用における安全確保につき、国民の生命、健康及び財産の保護、環境の保全並びに我が国の安全保障に資することを目的として行うものとし(原子力基本法2条2項)、原子炉等規制法は、原子力施設において重大な事故が生じた場合に放射性物質が異常な水準で当該原子力施設を設置する工場又は事業所(以下「工場等」という。)の外へ放出されることその他の災害を防止等し、公共の安全を図るために、原子炉の設置及び運転等に関し、大規模な自然災害及びテロリズムその他の犯罪行為の発生も想定した必要な規制等を行い、国民の生命、健康及び財

産の保護,環境の保全並びに我が国の安全保障に資することを目的とする (原子炉等規制法1条)。このうち,原子力利用における安全確保の目的 に「我が国の安全保障に資すること」が規定され(原子力基本法2条2 項),上記目的のための「テロリズムその他の犯罪行為の発生をも想定し た必要な規制」の求めは(原子炉等規制法1条),本件改正において新た に定められたものである。

これを受け、設置許可基準規則は、重大事故に至る恐れがある事故又は 重大事故(以下「重大事故等」という。)に対処するための機能を有する 施設を「重大事故等対処施設」とし(設置許可基準規則2条2項11号)、 それが備えるべき要件等を規定する(同規則第3章)。

そして、重大事故等対処施設のうち、故意による大型航空機の衝突その他のテロリズムにより炉心の著しい損傷が発生するおそれがある場合又は炉心の著しい損傷が発生した場合において、原子炉格納容器の破損による工場等外への放射性物質の異常な水準の放出を抑制するための施設を「特定重大事故等対処施設」とし(同規則2条2項12号)、工場等には、次に掲げるところにより、特定重大事故等対処施設を設けなければならないこととしている(同規則42条)。

- ① 原子炉建屋への故意による大型航空機の衝突その他のテロリズムに対してその重大事故等に対処するために必要な機能が損なわれるおそれがないものであること
- ② 原子炉格納容器の破損を防止するために必要な設備を有するものであること
- ③ 原子炉建屋への故意による大型航空機の衝突その他のテロリズムの発生後,発電用原子炉施設の外からの支援が受けられるまでの間,使用できるものであること

また、重大事故等に対処するための機能を有する設備を「重大事故等対

処設備」とし(同規則2条2項14号),このうち,可搬型重大事故等対処設備(同規則43条2項)に関しては,例えば,地震,津波その他の自然現象又は故意による大型航空機の衝突その他のテロリズムによる影響等その他の条件を考慮した上で常設重大事故等対処設備と異なる保管場所に保管することなどの要件を満たすものでなければならないなどとしている(同規則43条3項5号)。

もっとも、設置許可基準規則が施行された平成25年7月8日の時点で現に設置されている発電用原子炉施設については、前同日以後最初に行われる原子炉等規制法43条の3の9第1項の規定による認可(いわゆる工事計画認可)の日から起算して5年を経過する日までの間は、設置許可基準規則42条の規定は適用されない(平成28年原子力規制委員会規則第1号による改正後の設置許可基準規則附則2項)。

カ 新規制基準をめぐる上記諸法令の定めによれば、新規制基準においては、 一般的に、重大事故等への対処は、重大事故等対処施設や重大事故等対処 設備をもってこれを行うものとしつつ、原子力基本法や原子炉等規制法の 改正点を踏まえ、重大事故のうち、故意による大型航空機の衝突その他の テロリズムによる炉心の著しい損傷又はそのおそれに対処するバックアッ プを目的とした一群の施設である特定重大事故等対処施設の設置を新たに 求めることにしたものと解するのが相当である。

確かに、特定重大事故等対処施設の設置を求めることにしたのが原子力基本法や原子炉等規制法の上記改正を受けたものであるとなれば、特定重大事故等対処施設が設置されて初めて故意による大型航空機の衝突等に対する関係での当該発電用原子炉施設の安全性が上記各法律の要請に応えるものとなることはいうまでもないし、故意による大型航空機の衝突やその他テロリズムによる影響に対応するべく可搬型重大事故等対処設備の配置等が求められているとはいえ、その扱いに時間がかかるのではないかとの

懸念も指摘されている(甲D513)。

しかし、上記のとおり、特定重大事故等対処施設の位置付けは、重大事故等のうちの一部の類型のものに対処するバックアップという点にあると解されるのであるから、例えば、可搬型重大事故等対処設備の設置や手順書の整備、可搬型の資器材の配備等、第一次的な役割を担うべき施設や設備等が整備されている限りにおいて、特定重大事故等対処施設の設置が猶予されている期間中であっても、当該発電用原子炉施設につき社会通念上求められる安全性に欠けるところはないといって差し支えないものというべきである。

したがって、設置許可基準規則が施行された時点で設置されていた発電用原子炉施設について、その後に初めて得られた本体施設等に係る工事計画認可の日から起算して5年を経過する日までの間、同規則42条は適用されない旨の経過措置の定め(附則2項)は一応合理的であると認めるべきである。

- エ 前提事実によれば、本件原子炉施設については、特定重大事故等対処施設を除く施設につき、設置許可基準規則が施行された平成25年7月8日よりも後に初めて工事計画認可処分が得られた日から5年は経過していないから、設置許可基準規則42条は適用されないことになる。
- オ もっとも、債務者は、大規模な自然災害又は故意による大型航空機の衝突その他のテロリズムによる原子炉施設の大規模な損壊(以下「大規模損壊」という。)が発生した場合における体制の整備に関し、大規模損壊が発生した場合の手順書の整備、大規模損壊発生時の体制の整備(大規模損壊への対応のための発電所災害対策要員等への教育及び訓練、大規模損壊発生時の人的体制・活動拠点・発電所外部からの支援体制)、設備及び資機材の整備(可搬型重大事故等対処設備の配備、大規模損壊発生時の対応に必要な資機材の配備)について、それぞれ整備方針を策定し、原子力規

制委員会から、原子炉等規制法43条の3の6第1項3号に規定する「重大事故の発生及び拡大の防止に必要な措置を実施するために必要な技術的能力」の審査を行う際の審査基準である「実用発電用原子炉に係る発電用原子炉設置者の重大事故の発生及び拡大の防止に必要な措置を実施するために必要な技術的能力に係る審査基準」(平成25年6月19日原規技発第1306197号原子力規制委員会決定)に適合している旨判断されたことが認められる(乙11、13)。

カ 以上によれば、特定重大事故等対処施設の設置をめぐる上記経過措置を含む新規制基準は合理的であり、債務者は、そもそも現時点で特定重大事故等対処施設の設置を猶予されている段階にあるけれども、故意による大型航空機の衝突その他のテロリズムによる炉心の著しい損傷又はそのおそれを含む重大事故全般に第一次的に対処するための方針が策定され、原子力規制委員会から上記審査基準に適合している旨判断されており、一件記録を精査しても、上記策定内容に不合理な点は見当たらないから、特定重大事故等対処施設が設置されていないからといって直ちにその措置が不合理であるとはいえない。この点に関する債権者らの主張は、採用することができない。

(7) 航空機落下について

ア 判断の基礎となる事実

(ア) 新規制基準等の内容について

設置許可基準規則6条3項は、「安全施設は、工場等内又はその周辺において想定される発電用原子炉施設の安全性を損なわせる原因となるおそれがある事象であって人為によるもの(故意によるものを除く。)に対して安全機能を損なわないものでなければならない」と定め、同規則解釈6条8項は、ここにいう人為事象には航空機落下等の飛来物が含まれ、航空機落下については、航空機落下確率評価基準等に基づき、防

護設計の要否について確認すると定めている。(乙68)

(イ) 債務者による評価について

債務者は、過去の日本国内における航空機落下事故の実績を基に、落下事故をいくつかのカテゴリに分類し、そのカテゴリごとに落下確率を求めることとし、具体的には、①計器飛行方式民間航空機の落下事故として、(a)飛行場での離着陸時における落下事故、及び(b)航空路を巡行中の落下事故、(c)有視界飛行方式民間航空機の落下事故、並びに②自衛隊機又は米軍機の落下事故として、(d)訓練空域内で訓練中及び訓練空域外を飛行中の落下事故、及び(e)基地一訓練空域間往復時の落下事故をそれぞれ選定した上、各航空機落下事故が発生する確率を航空機落下事故確率評価基準に定められた手法に従って算定した。

その結果, $\mathbb{O}(a)$ は評価対象外として, $\mathbb{O}(b)$ は9. 41×10^{-10} , $\mathbb{O}(c)$ は1. 45×10^{-8} , $\mathbb{O}(d)$ は2. 43×10^{-8} , $\mathbb{O}(e)$ は2. 43×10^{-8} , $\mathbb{O}(e)$ は2. 43×10^{-8} の合計約6. 5×10^{-8} 回/炉・年となり,これは防護設計の要否判断の基準である 10^{-7} 回/炉・年を超えない確率であることから,債務者は,本件原子炉において航空機落下に対する防護は設計上考慮する必要がないと評価した。(以上につき,乙11)

(ウ) 原子力規制委員会の審査について

原子力規制委員会は、債務者が、飛来物(航空機落下等)に対しては、最新の航路、飛行実績等の情報を踏まえて航空機落下確率を評価し、防護設計の要否判断の基準である 10^{-7} 回/炉・年を超えていないとして、設計上考慮する必要はないとしていることは合理性があることを判断した。(乙13)

イ 債権者らは、上記第3の10(6)のとおり主張する。

しかし、債権者らが「ひたすら確率を下げる仕組み」として挙げる内容 は、いずれも債務者が原子力発電所における航空機落下確率を算定する上 で合理的と考えられる限定を行ったものに過ぎないとも考えられる。また、債権者らは、民間航空機、自衛隊機及び米軍機の落下事故の全国平均値を用いることについても落下確率を下げる要因となるかのように主張するが、飛行規制等がなされた原子力発電所に航空機が落下する可能性は他の地域に比べて十分低いと考えられるため、むしろ、全国平均値を用いることによって安全側の評価(落下確率を実際よりも高く算定する評価)となると考えられるのであり、債権者らの上記主張は失当である。

したがって、債務者が航空機落下を設計上考慮する必要はないとしていることは合理性があると確認した原子力規制委員会の判断に不合理な点はないものというべきである。この点に関する債権者らの主張は、採用することができない。

(8) 小括

以上によれば、シビアアクシデント対策に関する新規制基準の内容や債務者の評価を合理的であるとした原子力規制委員会の判断や、それへ至る過程に不合理な点はない。

- 11 テロリズム対策の合理性(争点11)について
 - (1) 判断の基礎となる事実
 - ア 新規制基準等の内容について

原子力基本法は、原子力利用における安全確保につき、国民の生命、健康及び財産の保護、環境の保全並びに我が国の安全保障に資することを目的として行うものとし(原子力基本法2条2項)、原子炉等規制法は、原子力施設において重大な事故が生じた場合に放射性物質が異常な水準で工場等の外へ放出されることその他の災害を防止等し、公共の安全を図るために、原子炉の設置及び運転等に関し、大規模な自然災害及びテロリズムその他の犯罪行為の発生も想定した必要な規制等を行い、国民の生命、健康及び財産の保護、環境の保全並びに我が国の安全保障に資することを目

的とする(原子炉等規制法1条)。

これを受けて、設置許可基準規則は、発電用原子炉施設への人の不法な侵入等及び不正アクセス行為を防止するための設備の設置(設置許可基準規則7条)を求めるとともに、特定重大事故等対処施設の設置を求め(同規則42条。ただし、本件原子炉施設に対してはその適用が猶予されていることは上記10で説示したとおりである。)、可搬型重大事故等対処設備について、故意による大型航空機の衝突その他のテロリズムによる影響を考慮した上で常設重大事故等対処設備と異なる保管場所に保管することを求めている(同規則43条3項5号)。

そして,新規制基準の上記内容は,設置許可基準規則及び「実用発電用原子炉に係る発電用原子炉設置者の重大事故の発生及び拡大の防止に必要な措置を実施するために必要な技術的能力に係る審査基準」(重大事故等防止技術能力基準)によって具体化されている(乙68)。

イ 債務者の対策等について

債務者は、本件申請に当たり、上記アの新規制基準に基づき、次のとおり対策を取るものとした(乙11)。

(ア) 設置許可基準規則関係

債務者は、安全上重要な設備を含む区域を設定し、その区域を人の容易な侵入を防止するための柵、鉄筋コンクリート造の壁等の障壁によって防護した上で、巡視、監視等を行うことにより、接近管理及び出入管理を適切に行うとともに、探知施設を設け、警報、映像等を集中監視している。防護された区域の内部においても、施錠管理により、原子炉施設等の防護のために必要な設備又は装置の操作に係る情報システムへの不法な接近を防止している。本件原子炉に不正に爆発性又は易燃性を有する物件その他人に危害を与え、又は他の物件を損傷する恐れがある物件を持ち込むこと(郵便物等による発電所外からの爆破物及び有害物質

の持込みを含む。)を防止するため、持込み点検を実施するとともに、 サイバーテロを含む不正アクセス行為を防止するため、原子炉施設等の 防護のために必要な設備又は装置の操作に係る情報システムが、電気通 信回線を通じた不正アクセス行為を受けることがないよう、当該情報シ ステムに対する外部からのアクセスを遮断している。

また、債務者は、地震、津波その他の自然現象又は故意による大型航空機の衝突その他のテロリズムによる影響を考慮し、屋内の可搬型重大事故等対処設備について、可能な限り常設重大事故防止設備と位置的分散を図り複数箇所に分散して保管している。屋外に保管する可搬型重大事故等対処設備のうち水又は電力を供給するための注水設備及び電源設備は必要となる容量等を賄うことができる設備(2セット)について、それ以外のものは必要となる容量等を賄うことができる設備(1セット)について、いずれも原子炉建屋及び原子炉補助建屋から100mの離隔距離を確保するとともに、当該可搬型重大事故等対処設備がその機能を代替する屋外の設計基準事故対処設備等から100mの離隔距離を確保した上で、複数箇所に分散して保管している。加えて、当該可搬型重大事故等対処設備がその機能を代替する屋外の常設重大事故等対処設備からも、少なくとも1セットは100mの離隔距離を確保して保管している。

(イ) 重大事故等防止技術的能力基準関係

a 手順書の整備

大規模な自然災害又は故意による大型航空機の衝突その他のテロリ ズムによる大規模損壊の発生時には、施設の損壊状況等の迅速な把握 を試みるとともに断片的に得られる情報、確保できる人員及び使用可 能な設備により、環境への放射性物質の放出低減を最優先に考えた対 応を行うこととし、重大事故等対策において整備する手順等に加えて、 可搬型重大事故等対処設備による対応を中心とした多様性及び柔軟性を持たせた手順等を整備している。

b 教育,訓練の実施

大規模損壊への対応のための発電所災害対策要員(協力会社含む。)への教育及び訓練については、重大事故等対策にて実施する教育及び訓練に加え、大規模損壊時に対応する手順及び事故対応用の資機材等の取扱い等を習得するための教育及び訓練を実施している。具体的には、大規模損壊発生時に通常の指揮命令系統が機能しない場合を想定して原子力防災管理者及び連絡責任者への個別の教育及び訓練を実施するとともに、発電所災害対策要員が、それぞれに割り当てられた役割に応じた対応だけでなく、本来の役割とは異なる作業等についても流動性をもって対応できるよう、発電所災害対策要員に対する教育及び訓練の充実を図っている。

c 体制の整備

大規模損壊発生時の体制については、通常の原子力防災体制を基本としつつ、通常とは異なる対応が必要となる場合にも流動性を持って大規模損壊発生時の対応手順に従った活動を行うことができるよう、夜間・休日の人員確保や本件発電所1、2号炉に係る各発電用原子炉施設の運転員による応援態勢を考慮して体制を整備している。発電所災害対策本部要員等が活動を行うにあたっての拠点は、剛構造の緊急時対策所を基本としつつ、発電所災害対策要員に対し必要な指揮命令ができる通信連絡設備を配備している総合事務所棟(免震構造)も状況に応じて活用することとしている。

また,大規模損壊発生時における発電所外部からの支援体制として, 災害対策本部(松山,高松)が速やかに確立できるよう体制を整備す るとともに,他の原子力事業者及び原子力緊急事態支援組織へ応援要 請し、技術的な支援が受けられるよう体制を整備している。さらに、協力会社から現場作業や資機材輸送等に係る要員の派遣を要請できる体制、プラントメーカーによる技術的支援を受けられる体制も構築している。

d 設備及び資機材の整備

大規模損壊発生時の対応手順に従って活動を行うために必要な可搬型重大事故等対処設備は、共通要因による損傷を防止することができるよう、同等の機能を有する設計基準事故対処設備及び常設重大事故等対処設備と同時に外部事象の影響を受けにくい場所に保管するとともに、同時に複数の可搬型重大事故等対処設備が機能喪失しないよう、可搬型重大事故等対処設備同士の距離を十分に離して、複数箇所に分散して配置している。

また、大規模な自然災害又は故意による大型航空機の衝突その他のテロリズム発生時の対応に必要な資機材は、原子炉建屋及び原子炉補助建屋から100m以上離隔距離を確保した場所に分散して配備することとし、①消火活動を実施するために着用する防護具、消火薬剤、可搬型泡放水砲等、②高線量の環境下において事故対応を行うための高線量対応防護服等、③指揮者と現場間、発電所外等との連絡のための多様な通信機器等を配備している。

ウ 原子力規制委員会の審査について(乙13)

(ア) 設置許可基準規則関係

原子力規制委員会は、債務者の設計が、核物質防護対策として、原子 炉施設への人の不法な侵入を防止するため、安全施設を含む区域を設定 し、その区域を人の侵入を防止できる障壁等により防護し、人の接近管 理及び出入管理が行える設計とする、原子炉施設に不正に爆発性又は易 燃性を有する物件等の持込み(郵便物等による発電所外からの爆破物及 び有害物質の持込みを含む。)を防止するため、持込み点検が可能な設計とする、原子炉施設及び特定核燃料物質の防護のために必要な設備又は装置の操作に係る情報システムが、電気通信回線を通じた不正アクセス行為(サイバーテロを含む。)を受けることがないように、当該情報システムに対する外部からのアクセスを遮断する設計とすることを確認したことから、設置許可基準規則に適合するものと判断した。

また,原子力規制委員会は,可搬型重大事故等対処設備の設備共通の設計方針について,原子炉建屋及び原子炉補助建屋から100mの離隔距離を確保した場所に複数箇所に分散して保管するなど,設置許可基準規則43条第3項及び同項の解釈を踏まえた設計方針としていることから,適切なものであると判断した。

(イ) 重大事故等防止技術的能力基準関係

原子力規制委員会は、債務者の計画が、重大事故等防止技術的能力基準2.1項及び同項の解釈を踏まえて必要な検討を加えた上で策定されており、大規模損壊が発生した場合における体制の整備に関して必要な手順書、体制及び資機材等が適切に整備される方針であることを確認したことから、重大事故等防止技術的能力基準2.1項に適合しているものと判断した。

(2) テロリズム等との関係における本件原子炉施設の安全性について

犯罪行為の予防及び鎮圧は警察の責務とされているところ(警察法2条1項),事の大小を問わずテロリズムが「犯罪行為」に含まれることは明らかである。また,原子力災害対策特別措置法も,原子力災害の発生の防止に関し事業者に万全の措置を講ずる責務を課す一方で(原子力災害対策特別措置法3条),国は,テロリズムその他の犯罪行為による原子力災害の発生も想定し,これに伴う被害の最小化を図る観点から,警備体制の強化,原子力事業所における深層防護の徹底,被害の状況に応じた対応策の整備その他原子

力災害の防止に関し万全の措置を講ずる責務を有すると規定している(同法 4条の2)。これらの法令の定めによれば、発電用原子炉施設のテロリズム その他の犯罪行為に対する安全性の確保については、国の責務であることを 基本としつつ、施設の構造及び設備並びに重大事故等対策の観点からの規制 を通じて事業者にも一定の責務を課しているものということができるのであって、設置許可基準規則の上記のような定めは、以上のような法の趣旨を具体化したものということができる。そして、上記(1)の事実によれば、債務者は、新規制基準の定めに応じた措置として一定の対策を講じることとし、その点について原子力規制委員会から新規制基準に適合する旨の判断を得たというのであるが、その旨の原子力規制委員会の判断が不合理であるということはできない。

そうであれば、本件原子炉施設に安全性に欠けるところがあるとして、事業者である債務者による債権者らの人格権(生命、身体に係る権利)に対する違法な侵害行為のおそれがあるということはできない。

(3) 侵入者対策について

債権者らは、上記第3の11債権者らの主張欄(1)のとおり主張する。

しかし、原子力基本法2条2項は、「安全の確保については、確立された国際的な基準を踏まえ、国民の生命、健康及び財産の保護、環境の保全並びに我が国の安全保障に資することを目的として、行うものとする」と定めているところ、債権者らの指摘する米国における侵入者対策が、確立した国際的な基準であることを示す具体的な主張、疎明はない。また、仮に米国における侵入者対策が確立された国際的な基準であるということができるとしても、原子力基本法の上記規定は、必ずしも米国等のテロリズム対策と同様の対策を講じることを要求するものではなく、確立された国際的な基準を踏まえつつ、我が国の法制度やテロリズムをめぐる状況を勘案した上で、我が国において最も適切なテロリズム対策を講じ、原子力発

電所の安全性を確保することを求めているものと考えられるところ,本件原子炉施設においては、一般国民が武器を所持できない我が国では、米国のように事業者自らが武装警備を行うことが法制度上不可能であることを踏まえ、警察、海上保安庁及び自衛隊が連携するなどして侵入者を想定した訓練を繰り返し行っており、さらに、武装した警察機動隊が本件発電所に常駐して警備を実施し、海上保安庁の巡視船艇を周辺海域に常時配置するなどして監視警戒を実施しているのであるから、新規制基準や本件原子炉施設をめぐる侵入者対策に不合理な点があるということはできない。この点に関する債権者らの主張は、採用することができない。

(4) 内部脅威対策について

債権者らは、上記第3の11債権者らの主張欄(2)のとおり主張する。そして、債務者において、現時点では債権者らが主張するような内容の信頼性確認制度を導入していないことが窺える(審尋の全趣旨)。

しかし、原子力発電所の作業員等の信頼性確認制度の導入にあたっては、プライバシーの保護等にかかわる問題があり、慎重な制度設計が必要となると考えられ、そうであるからこそ、原子力規制委員会の下に設けられた「個人の信頼性確認制度に関するワーキンググループ」において、同制度の導入に向けた議論が慎重に進められているものと考えられる。そして、債務者は、制度導入が決せられるまでの間の過渡的な対策として、作業員等の内部者によるテロリズム行為を防止する観点から、作業員の出入管理、持込み点検等を適切に行うこととした上、安全確保のために枢要な設備を含む区域では、二人以上の者が同時に作業又は巡視を行う「ツーマンルール」を遵守することとしているのである。また、この点については、原子力委員会原子力防護専門部会が作成した「我が国の核セキュリティ対策の強化について」と題する書面(甲D189)にも、「内部脅威対策としての信頼性確認制度の検討・導入には制度設計等に係る議論を深める必要があるため、この制度が導入

されるには一定の時間を要するので、この間は、暫定的な代替措置である二人ルール等の措置の徹底・強化が必要であると評価している」と記載されているところであって、債務者が現時点において信頼性確認制度を導入していないことから、債務者のテロリズム対策が不十分であるということはできない。この点に関する債権者らの主張は、採用することができない。

(5) 航空機衝突対策について

債権者らは上記第3の11債権者らの主張欄(3)のとおり主張する。

しかし、設置許可基準規則は、故意による大型航空機の衝突に起因する炉心の損傷等の事態に対処することを目的として特定重大事故等対処施設を設けるよう求めているが(設置許可基準規則42条)、既存の発電用原子炉施設については、平成25年7月8日以降、本来施設に係る最初の工事計画認可処分が行われた後5年間は同条が適用されない旨の経過規定があること、そのような経過規定を含む新規制基準が合理的であること、本件原子炉施設は、現時点において、上記経過規定の適用を受けることは、上記10(5)で説示したとおりである。

一方、債務者は、上記事態に対処するために、可搬型重大事故等対処設備を中心とした設備及び資機材が確保されており、その性能や確保の状況、保管の実情等については、原子力規制委員会から、重大事故等防止技術的能力基準に適合している旨判断されたというのである(上記(1)イ(イ)、ウ(イ))。そうであれば、現時点で債務者が本件原子炉施設のための特定重大事故等対処施設を設置していないからといって、そのことのゆえに、直ちにテロリズム対策としての航空機衝突事故対策が十分でないとまでいうことはできない。この点に関する債権者らの主張は、採用することができない。

(6) ミサイル対策について

債権者らは、上記第3の11債権者らの主張欄(4)のとおり主張する。 しかし、ミサイル攻撃等の武力攻撃に対しては、それがテロリズムであれ、 他国からの武力攻撃であれ、武力攻撃事態等における国民の保護のための措置に関する法律に基づき、基本的には国が対処すべきものと考えられ(同法律3条1項)、国民は、自発的な意思に基づく必要な協力をするよう努めるものとされているに過ぎない(同法律4条1、2項)。そして、債務者を含む事業者の対応としては、原子力防災管理者の内閣総理大臣及び原子力規制委員会等に対する通報義務、原子力災害対策特別措置法25条1項の準用による武力攻撃原子力災害の発生又は拡大の防止のために必要な応急措置を行わせる義務等が規定されているにすぎない(武力攻撃事態等における国民の保護のための措置に関する法律105条ないし107条)。そのような法令の定めによれば、債務者が独自にミサイル攻撃等に対する具体的な対策を採っていなかったとしても、そのことをもって本件原子炉施設に違法な人格権侵害の危険性があるということはできない。この点に関する債権者らの主張は、いずれも採用することができない。

(7) サイバーテロ対策について

債権者らは上記第3の11債権者らの主張欄(5)のとおり主張する。

しかし、債務者は、サイバーテロを含む不正アクセス行為を防止するため、原子炉施設等の防護のために必要な設備又は装置の操作に係る情報システムが、電気通信回線を通じた不正アクセス行為を受けることがないよう、当該情報システムに対する外部からのアクセスを遮断しており、USBを介したウイルス感染の防止対策として、事前に承認され、かつ、ウイルスチェックを受けたUSBでなければ使用できないよう管理体制を構築していることが認められ(乙113)、その措置内容は合理的であるというべきである。この点に関する債権者らの主張は、採用することができない。

(8) 小括

以上によれば、いわゆるテロリズム対策に関する新規制基準の内容や債務 者が取った措置又は方針を合理的であるとした原子力規制委員会の判断や、 それへ至る過程に不合理な点はない。

12 小括

以上検討してきたところによれば、基準地震動の策定、耐震設計における重要度分類、使用済燃料ピット等の安全対策、地すべりと液状化現象による危険性の評価、制御棒挿入に係る危険性の評価、基準津波の策定、火山事象の影響による危険性の評価、テロリズム対策、シビアアクシデント対策のそれぞれにつき、新規制基準の定めが不合理であるということはできないし、本件原子炉施設が上記の各点につき新規制基準に適合するとした原子力規制委員会の判断が不合理であるともいえない。そうであれば、債務者において、本件原子炉施設の運転等によって放射性物質が周辺環境に放出され、その放射線被曝により債権者ら(のうち本件原子炉施設の安全性の欠如に起因して生じる放射性物質が周辺の環境に放出されるような事故によってその生命、身体に直接的かつ重大な被害を受けるものと想定される地域に居住等する者)がその生命、身体に直接的かつ重大な被害を受ける具体的危険が存在しないことについて、主張、疎明を尽くしたことになる。

そして,一件記録を精査しても,ほかに本件原子炉施設につき,上記具体的 危険の存在を窺わせるような事情は何ら見当たらない。

そうすると、債権者らの申立ては、いずれも被保全権利についての疎明を欠 くことになる。

13 結論

以上の次第で、債権者らの申立ては、その余の点について判断するまでもな く、いずれも理由がない。

平成29年3月30日

広島地方裁判所民事第4部

裁判長裁判官 吉 岡 茂 之

裁判官 久保田 寛 也

裁判官 田 中 佐 和 子

文 献 等 目 録

- 塩ほか(2011): 「長大横ずれ断層による内陸地震の平均動的応力降下量の推定と 強震動予測のためのアスペリティモデルの設定方法への応用」 壇一男・具典 淑・入江紀嘉・アルズペイマサマン・石井やよい(甲D106, 乙37)
- 壇ほか(2012):「平均動的応力降下量を用いた長大な横ずれ断層のアスペリティモデルによる強震動の試算と考察」壇一男・具典淑・島津奈緒未・入江紀嘉(乙176)
- 壇ほか(2016): 「長大断層用の強震動予測レシピの検証(その1)長大横ずれ断層による1999年トルコ Kocaeli 地震の事例」壇一男・具典淑・島津奈緒未・藤原広行・森川信之(乙278)
- Fujii and Matsu'ura (2000): 「Regional Difference in Scaling Laws for Large

 Earthquakes and its Tectonic Implication」 Fujii, Yoshihiro and

 Mitsuhiro Matsu'ura
- Irie et al. (2010): 「Improvement of kinematic fault models for predicting strong motions by dynamic rupturing simulation-Evaluation of proportionality constant between stress drop and seismic moment in strike-slip inland earthquakes-」 Irie, Kiyoshi· Kazuo Dan· Shinya Ikutama and Kojiro Irikura
- 入倉・三宅(2001):「シナリオ地震の強震動予測」入倉孝次郎・三宅弘恵(甲D 126)
- 垣見ほか(2003): 「日本列島と周辺海域の地震地体構造区分」垣見俊弘・松田時 彦・相田勇・衣笠善博
- 加藤ほか(2004):「震源を事前に特定できない内陸地殻内地震による地震動レベルー地質学的調査による地震の分類と強震観測記録に基づく上限レベルの検討ー」加藤研一・宮腰勝義・武村雅之・井上大榮・上田圭一・壇一男(乙2

- 栗山ほか(2008): 「地震規模予測の考え方の違いが長大活断層で発生する地震の 強震動予測結果にもたらす影響の評価―糸魚川-静岡構造線活断層帯北部・中 部を震源断層として」栗山雅之・隈元崇・関口春子・岩田知孝(甲D122)
- 町田・新井(2011):「新編火山灰アトラス[日本列島とその周辺]」町田洋・新井 房夫
- Maeda and Sasatani (2009): 「Strong ground motions from an Mj6.1 inland crustal earthquake in Hokkaido, Japan: the 2004 Rumoi earthquake」

 Maeda, T·Sasatani, T
- 松田(1975): 「活断層から発生する地震の規模と周期について」松田時彦(甲D 102, 乙175)
- 松島ほか(2010): 「内陸地殻内の長大断層で発生する地震に関するスケーリング 則」松島信一・室谷智子・吾妻崇・入倉孝次郎・北川貞之(甲D124)
- 室谷ほか(2009): 「長大断層に関するスケーリング則―海外で発生した長大断層での地震の解析事例―」室谷智子・松島信一・吾妻崇・入倉孝次郎(乙164)
- 室谷ほか(2010):「内陸の長大断層に関するスケーリング則の検討」室谷智子・松 島信一・吾妻崇・入倉孝次郎・北川貞之(乙163)
- Murotani et al. (2015): 「Scaling relations of source parameters of earthquakes occurring on inland crustal mega-fault systems」 Murotani, S.

 S. Matsushima T. Azuma K. Irikura and S. Kitagawa
- Noda et.al(2002): 「Response spectra for design purpose of stiff structures on rock sites, OECD-NEA workshop on the relation between seismological data and seismic engineering analysis」 Shizuo Noda·Kazuhiko Yashiro
 Katsuya Takahashi·Masayuki Takemura·Susumu Ohno·Masanobu Tohdo·
 Takahide Watanabe (甲D310)

- 岡田・堤(1997): 「中央構造線活断層系父尾断層の完新世断層活動—徳島県市 場町でのトレンチ調査—」岡田篤正・堤浩之
- 佐藤ほか(2013): 「物理探査・室内試験に基づく2004年留萌支庁南部の地震による K-NET 港町観測点 (HKD020)の基盤地震動とサイト特性評価」佐藤浩章・芝良昭・東貞成・功刀卓・前田宜浩・藤原広行(乙41)
- Somerville et al. (1999): 「Characterizing crustal earthquake slip models for the prediction of strong ground motion」 Somerville, P. G. •
 K. Irikura R. Graves S. Sawada D. Wald N. Abrahamson Y. Iwasaki •
 T. Kagawa N. Smith and A. Kowada
- Stirling et al.(2002): 「Comparison of Earthquake Scaling Relations

 Derived from Data of the Instrumental and Preinstrumental Era」 Stirling,

 M., D. Rhoades, and K. Berryman
- 武村(1990):「日本列島およびその周辺地域に起こる浅発地震のマグニチュードと地震モーメントの関係」武村雅之(甲D548)
- 武村(1998):「日本列島における地殻内地震のスケーリング則-地震断層の影響 および被害地震との関係」武村雅之(乙153)
- 藤堂ほか(2012): 「長大な横ずれ断層による内陸地震のアスペリティモデル設定 方法の中央構造線への応用と強震動の試算」藤堂正喜・壇一男・具典淑・入 江紀嘉・呉長江(乙177)
- 司・翠川(1999): 「断層タイプ及び地盤条件を考慮した最大加速度・最大速度の 距離減衰式」司宏俊・翠川三郎
- Tsutsumi and Okada (1996): 「Segmentation and Holocene Surface Faulting on the Median Tectonic Line, Southwest Japan」 Tsutsumi, H. and Okada, A.
- 堤・後藤(2006): 「四国の中央構造線断層帯の最新活動に伴う横ずれ変位量分布」 堤浩之・後藤秀昭(乙165)
- Wells and Coppersmith (1994): New empirical relationship among magnitude,

- rupture length, rupture width, rupture area, and surface displacement] Wells, D. L. and K. J. Coppersmith (\boxplus D 5 5 2)
- W.G.C.E.P (1995) : 「Seismic hazards in southern California: probable earthquakes, 1994 to 2024」 Working Group on California Earthquake Probabilities
- 山中·島﨑(1990): 「Scaling relationship between the number of aftershocks and the size of the main shock」 Yamanaka, Y. and K. Shimazaki

(アルファベット順)